精英家教网 > 高中数学 > 题目详情
17.交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:
 交强险浮动因素和浮动费率比率表
 浮动因素浮动比率 
 A1 上一个年度未发生有责任道路交通事故 下浮10%
 A2 上两个年度未发生有责任道路交通事故 下浮20%
 A3 上三个及以上年度未发生有责任道路交通事故 下浮30%
 A4 上一个年度发生一次有责任不涉及死亡的道路交通事故 0%
 A5 上一个年度发生两次及两次以上有责任道路交通事故 上浮10%
 A6 上一个年度发生有责任道路交通死亡事故 上浮30%
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
 类型 A1 A2 A3 A4 A5 A6
 数量10 5 5 20 15 5 
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的概率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有6辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两车辆中恰好有一辆事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌的二手车,求一辆车盈利的平均值.

分析 (1)利用等可能事件概率计算公式,能求出一辆普通6座以下私家车第四年续保时保费高于基本保费的概率.
(2)①由统计数据可知,该销售商店内的六辆该品牌车龄已满三年的二手车有两辆事故车,设为b1,b2,四辆非事故车设为a1,a2,a3,a4.利用列举法求出从六辆车中随机挑选两辆车的基本事件总和其中两辆车恰好有一辆事故车包含的基本事件个数,由此能求出该顾客在店内随机挑选的两辆车恰好有一辆事故车的概率.
②由统计数据可知,该销售商一次购进120辆该品牌车龄已满三年的二手车有事故车40辆,非事故车80辆,由此能求出一辆车盈利的平均值.

解答 解:(1)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为P=$\frac{15+5}{60}=\frac{1}{3}$.
(2)①由统计数据可知,该销售商店内的六辆该品牌车龄已满三年的二手车有两辆事故车,
设为b1,b2,四辆非事故车设为a1,a2,a3,a4,从六辆车中随机挑选两辆车共有:(b1,b2),(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a4),总共15种情况,
其中两辆车恰好有一辆事故车共有(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),共8种情况,所以该顾客在店内随机挑选的两辆车恰好有一辆事故车的概率为P=$\frac{8}{15}$.
②由统计数据可知,该销售商一次购进120辆该品牌车龄已满三年的二手车有事故车40辆,非事故车80辆,所以一辆车盈利的平均值为$\frac{1}{120}$[(-5000)×40+10000×80]=5000元.

点评 本题考查概率的求法及应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式、列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的是(  )
A.“x<-1”是“x2-x-2>0”的必要不充分条件
B.“P且Q”为假,则P假且 Q假
C.命题“ax2-2ax+3>0恒成立”是真命题,则实数a的取值范围是0≤a<3
D.命题“若x2-3x+2=0,则x=2”的否命题为“若x2-3x+2=0,则x≠2”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.己知A(1,0,0),B(0,1,0),C(0,0,1),则平面ABC的一个单位法向量是$(\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点F(-c,0)(c>0)作圆x2+y2=$\frac{a^2}{4}$的切线,切点为E,延长FE交双曲线右支于点P.且满足$\overrightarrow{OP}=\overrightarrow{FE}+\overrightarrow{OE}$,则双曲线的渐近线方程为(  )
A.$\sqrt{10}$x±2y=0B.2x±$\sqrt{10}$y=0C.$\sqrt{6}$x±2y=0D.2x±$\sqrt{6}$y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果a>b>0,那么下面一定成立的是(  )
A.a-b<0B.ac>bcC.$\frac{1}{a}$<$\frac{1}{b}$D.a3<b3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α,β,γ为不同的平面,m,n为不同的直线,则m⊥β的一个充分条件是(  )
A.α∩γ=m,α⊥γ,β⊥γB.α⊥β,β⊥γ,m⊥αC.α⊥β,α∩β=n,m⊥nD.n⊥α,n⊥β,m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{|x|},}&{x≤\frac{1}{2}}\\{\sqrt{2}|lo{g}_{2}x|,}&{x>\frac{1}{2}}\end{array}\right.$,方程f(x)-c=0有四个根,则实数c的取值范围是(  )
A.[1,$\sqrt{2}$]B.($\frac{\sqrt{2}}{2}$,1)C.($\frac{\sqrt{2}}{2}$,$\sqrt{2}$)D.(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设实数x,y满足约束条件$\left\{\begin{array}{l}x-y≥-1\\ x+y≤4\\ y≥a\end{array}\right.$,目标函数z=3x-2y的最小值为-4,则z的最大值为17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(2,-n),$\overrightarrow{b}$=(Sn,n+1),n∈N*,其中Sn是数列{an}的前n项和,若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则数列{$\frac{{a}_{n}}{{a}_{n+1}{a}_{n+4}}$}的最大项的值为(  )
A.$\frac{1}{9}$B.$\frac{2}{3}$C.-$\frac{1}{9}$D.-$\frac{2}{3}$

查看答案和解析>>

同步练习册答案