精英家教网 > 高中数学 > 题目详情
10.已知抛物线E:x2=8y的焦点F到双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐进线的距离为$\frac{4\sqrt{5}}{5}$,且抛物线E上的动点M到双曲线C的右焦点F1(c,0)的距离与直线y=-2的距离之和的最小值为3,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1

分析 确定抛物线的焦点坐标,双曲线的渐近线方程,进而可得a=2b,再利用抛物线的定义,结合P到双曲线C的右焦点F1(c,0)的距离与到直线y=-2的距离之和的最小值为3,可得FF1=3,从而可求双曲线的几何量,从而可得结论.

解答 解:抛物线x2=8y的焦点F(0,2)
双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)一条渐近线的方程为bx-ay=0,
由抛物线x2=8y的焦点F到双曲线C的渐近线的距离为$\frac{4\sqrt{5}}{5}$,
可得d=$\frac{2a}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{4\sqrt{5}}{5}$,即有2b=a,
由P到双曲线C的右焦点F1(c,0)的距离与到直线y=-2的距离之和的最小值为3,
由抛物线的定义可得P到准线的距离即为P到焦点F的距离,
可得|PF1|+|PF|的最小值为3,
连接FF1,可得|FF1|=3,即c2+4=9,解得c=$\sqrt{5}$,
由c2=a2+b2,a=2b,解得a=2,b=1,
则双曲线的方程为$\frac{{x}^{2}}{4}$-y2=1.
故选:B.

点评 本题主要考查了抛物线、双曲线的几何性质,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2sinωx(ω>0)的部分图象如图所示.
(1)求函数y=f(x)的周期T;
(2)求函数y=f(x)的解析式,并补充函数在区间[$\frac{π}{2}$,π]的图象;
(3)判断函数y=f(x)在区间[$\frac{3π}{4}$,π]上是增函数还是减函数,并指出函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=1+i(i是虚数单位),则$\frac{2}{z}$-z2的共轭复数是(  )
A.-1+3iB.1+3iC.1-3iD.-1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过双曲线${x}^{2}-\frac{{y}^{2}}{4}=1$的右焦点F作直线l交双曲线于A?B两点,若|AB|=4,则这样的直线有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点与抛物线y2=20x的焦点重合,且其渐近线方程为y=±$\frac{4}{3}$x,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1D.$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.双曲线x2-$\frac{{y}^{2}}{3}$=1的焦点坐标为(-2,0),(2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线的一条渐近线方程为y=4x,且双曲线的焦点与抛物线y2=8x的焦点是重合的,则双曲线的标准方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$
C.$\frac{x^2}{4}-\frac{{4{y^2}}}{5}=1$D.$\frac{x^2}{4}-\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为(  )
A.$\frac{5}{4}$B.$\frac{6}{5}$C.$\frac{5}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,多面体ABCDEF中,四边形ABCD为菱形,且∠DAB=60°,EF∥AC,AD=2,EA=ED=EF=$\sqrt{3}$.
(Ⅰ)求证:AD⊥BE;
(Ⅱ)若BE=$\sqrt{5}$,求三棱锥F-BCD的体积.

查看答案和解析>>

同步练习册答案