精英家教网 > 高中数学 > 题目详情
2.已知双曲线的一条渐近线方程为y=4x,且双曲线的焦点与抛物线y2=8x的焦点是重合的,则双曲线的标准方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$
C.$\frac{x^2}{4}-\frac{{4{y^2}}}{5}=1$D.$\frac{x^2}{4}-\frac{y^2}{2}=1$

分析 求出抛物线的焦点坐标,确实双曲线的焦点坐标和方程,结合渐近线,利用待定系数法设出双曲线的方程,利用a,b,c的关系进行求解即可.

解答 解:∵双曲线的焦点与抛物线y2=8x的焦点是重合,
∴抛物线的焦点为(2,0),焦点在x轴上,
∵双曲线的一条渐近线方程为y=4x,
∴设双曲线的方程为x2-$\frac{{y}^{2}}{16}$=λ(λ>0),
即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{16λ}$=1,
则a2=λ,b2=16λ,
c2=λ+16λ=17λ=4,
则λ=$\frac{4}{17}$,
则双曲线的标准方程为$\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$,
故选:B

点评 本题主要考查双曲线的方程和性质,根据双曲线和抛物线焦点关系求出c,以及利用待定系数法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC=1.
(1)求证:平面PAB⊥平面PCB;
(2)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AC⊥AD,AB⊥BC,PA=AB=BC=1,AC=AD,点E在棱PB上,且PE=2EB.
(1)PD∥平面EAC.
(2)求平面ACE分四棱锥两部分E-ABC与PE-ACD的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线E:x2=8y的焦点F到双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐进线的距离为$\frac{4\sqrt{5}}{5}$,且抛物线E上的动点M到双曲线C的右焦点F1(c,0)的距离与直线y=-2的距离之和的最小值为3,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式$\frac{1}{x}$>1的解集为(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设点A,F(c,0)分别是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点、右焦点,直线x=$\frac{a^2}{c}$交该双曲线的一条渐近线于点P,若△PAF是等腰三角形,则此双曲线的离心率为(  )
A.$\sqrt{3}$B.3C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设A(-3,0),B(3,0),若直线y=-$\frac{3\sqrt{5}}{10}$(x-5)上存在一点P满足|PA|-|PB|=4,则点P到z轴的距离为(  )
A.$\frac{3\sqrt{5}}{4}$B.$\frac{5\sqrt{5}}{3}$C.$\frac{3\sqrt{5}}{4}$或$\frac{3\sqrt{5}}{2}$D.$\frac{5\sqrt{5}}{3}$或$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若点F2关于直线y=$\frac{b}{a}$x的对称点M也在双曲线上,则该双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.用更相减损术求得81与135的最大公约数是(  )
A.54B.27C.9D.81

查看答案和解析>>

同步练习册答案