| A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$ | ||
| C. | $\frac{x^2}{4}-\frac{{4{y^2}}}{5}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{2}=1$ |
分析 求出抛物线的焦点坐标,确实双曲线的焦点坐标和方程,结合渐近线,利用待定系数法设出双曲线的方程,利用a,b,c的关系进行求解即可.
解答 解:∵双曲线的焦点与抛物线y2=8x的焦点是重合,
∴抛物线的焦点为(2,0),焦点在x轴上,
∵双曲线的一条渐近线方程为y=4x,
∴设双曲线的方程为x2-$\frac{{y}^{2}}{16}$=λ(λ>0),
即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{16λ}$=1,
则a2=λ,b2=16λ,
c2=λ+16λ=17λ=4,
则λ=$\frac{4}{17}$,
则双曲线的标准方程为$\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$,
故选:B
点评 本题主要考查双曲线的方程和性质,根据双曲线和抛物线焦点关系求出c,以及利用待定系数法是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1 | D. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 3 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{5}}{4}$ | B. | $\frac{5\sqrt{5}}{3}$ | C. | $\frac{3\sqrt{5}}{4}$或$\frac{3\sqrt{5}}{2}$ | D. | $\frac{5\sqrt{5}}{3}$或$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com