分析 根据函数的图象得到函数的周期,根据周期公式求出ω的值,再根据函数图象判断区间[$\frac{3π}{4}$,π]上的单调性,并求出最值.
解答
解:(1)由图象可知,$\frac{T}{2}$=$\frac{π}{2}$,则T=π,
(2)由(1)知T=π,
∴$\frac{2π}{ω}$=π,
∴ω=2,
∴f(x)=2sin2x,
图象如图所示,
(3)由图象可知,函数y=f(x)在区间[$\frac{3π}{4}$,π]上是增函数,
最小值为f($\frac{3π}{4}$)=2sin(2×$\frac{3}{4}$π)=-2,
最大值为f(π)=2sin(2×π)=0.
点评 本题考查了正弦函数的图象和性质,以及周期,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{4}$ | B. | 1 | C. | -$\frac{1}{4}$或1 | D. | $\frac{1}{4}$或-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\sqrt{5}$或$\frac{{\sqrt{5}}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1 | D. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com