精英家教网 > 高中数学 > 题目详情
20.一场晚会有4个唱歌节目和2个舞蹈节目,要求排出一个节目单.
(1)第一个节目是舞蹈.有多少种排法?
(2)2个舞蹈节目要排在一起,有多少种排法?
(3)2个舞蹈节目彼此要隔开,有多少种排法?

分析 (1)先从2个舞蹈节目选一个排在第一个节目,其余的节目全排,问题得以解决.
(2)要把2个舞蹈节目要排在一起,则可以采用捆绑法,把三个舞蹈节目看做一个元素和另外4个元素进行全排列.
(3)2个舞蹈节目彼此要隔开,可以用插空法来解,即先把4个唱歌节目排列,形成5个位置,选2个把舞蹈节目排列.

解答 解(1)先从2个舞蹈节目选一个排在第一个节目,其余的节目全排,故有A21A55=240种,
(2)2个舞蹈节目要排在一起,把2个舞蹈节目看做一个元素和另外4个元素进行全排列,2个舞蹈节目本身也有一个排列有A55A22=240种,
(3)2个舞蹈节目彼此要隔开,可以用插空法来解,先把4个唱歌节目排列,形成5个位置,选2个把舞蹈节目排列,有A44A52=480种.

点评 本题是一个排列组合典型,实际上所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.圆x2+y2=1与圆x2+y2+2x+2y+1=0的交点坐标为(  )
A.(1,0)和(0,1)B.(1,0)和(0,-1)C.(-1,0)和(0,-1)D.(-1,0)和(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c分别是△ABC的内角A,B,C所对的边长,且cosA=$\frac{3}{5}$.
(1)求sin2$\frac{B+C}{2}$+cos2A的值;
(2)若b=2,△ABC的面积S=4,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知角α的终边上的点P与A(a,b)关于x轴对称(a≠0,b≠0),角β的终边上的点Q与A关于直线y=x对称,求$\frac{sin(π+α)}{sin(\frac{3π}{2}+β)}$-$\frac{sin(π-α)cos(-β)+1}{sin(\frac{7π}{2}+α)sinβ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若变量x,y满足$\left\{\begin{array}{l}{2x+y-5≥0}\\{x-y+5≥0}\\{2x-y-5≤0}\end{array}\right.$ 则x2+y2的最小值为(  )
A.$\frac{25}{4}$B.$\frac{5}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$与$\overrightarrow{b}$不共线,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的范围是(1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.
(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数为:
(2)一个袋中装有5个同样大小的球,编号为1,2,3,4,5.现从该袋内随机取出3个球,被取出的球的最大号码数为ξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2sinωx(ω>0)的部分图象如图所示.
(1)求函数y=f(x)的周期T;
(2)求函数y=f(x)的解析式,并补充函数在区间[$\frac{π}{2}$,π]的图象;
(3)判断函数y=f(x)在区间[$\frac{3π}{4}$,π]上是增函数还是减函数,并指出函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=1+i(i是虚数单位),则$\frac{2}{z}$-z2的共轭复数是(  )
A.-1+3iB.1+3iC.1-3iD.-1-3i

查看答案和解析>>

同步练习册答案