18£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-1+tcos¦Á}\\{y=1+tsin¦Á}\end{array}}\right.$£¨tΪ²ÎÊý£©£®ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=¦Ñcos¦È+2£®
£¨¢ñ£©Ð´³öÖ±Ïßl¾­¹ýµÄ¶¨µãµÄÖ±½Ç×ø±ê£¬²¢ÇóÇúÏßCµÄÆÕͨ·½³Ì£»
£¨¢ò£©Èô$¦Á=\frac{¦Ð}{4}$£¬ÇóÖ±ÏßlµÄ¼«×ø±ê·½³Ì£¬ÒÔ¼°Ö±ÏßlÓëÇúÏßCµÄ½»µãµÄ¼«×ø±ê£®

·ÖÎö £¨¢ñ£©ÓɲÎÊý·½³Ì¿ÉµÃ¶¨µã×ø±ê£¬ÔÙÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬¦Ñ2=x2+y2£¬Æ½·½»¯¼ò¼´¿ÉµÃµ½ËùÇóÆÕͨ·½³Ì£»
£¨¢ò£©Ð´³öÖ±ÏßlµÄ²ÎÊý·½³ÌºÍÆÕͨ·½³Ì£¬½áºÏÖ±½Ç×ø±êºÍ¼«×ø±êµÄ¹ØÏµ£¬¿ÉµÃÖ±Ïߵļ«×ø±ê·½³Ì£¬ÔÙÁªÁ¢ÇúÏßCµÄ¼«×ø±ê·½³Ì£¬¼´¿ÉµÃµ½ËùÇó½»µãµÄ¼«×ø±ê£®

½â´ð ½â£º£¨¢ñ£©Ö±Ïßl¾­¹ý¶¨µã£¨-1£¬1£©£¬-----------------------------------------------------------------£¨2·Ö£©
ÓɦÑ=¦Ñcos¦È+2µÃ¦Ñ2=£¨¦Ñcos¦È+2£©2£¬
µÃÇúÏßCµÄÆÕͨ·½³ÌΪx2+y2=£¨x+2£©2£¬»¯¼òµÃy2=4x+4£»---£¨5·Ö£©
£¨¢ò£©Èô$¦Á=\frac{¦Ð}{4}$£¬µÃ$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{2}}}{2}t}\\{y=1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$µÄÆÕͨ·½³ÌΪy=x+2£¬----------------------------------£¨6·Ö£©
ÔòÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin¦È=¦Ñcos¦È+2£¬------------------------------------------------£¨8·Ö£©
ÁªÁ¢ÇúÏßC£º¦Ñ=¦Ñcos¦È+2£®
µÃsin¦È=1£¬È¡$¦È=\frac{¦Ð}{2}$£¬µÃ¦Ñ=2£¬ËùÒÔÖ±ÏßlÓëÇúÏßCµÄ½»µãΪ$£¨2£¬\;\frac{¦Ð}{2}£©$£®------------£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔÚ¡÷ABCÖУ¬DÊÇACÖе㣬ÑÓ³¤ABÖÁE£¬BE=AB£¬Á¬½ÓDE½»BCÓÚµãF£¬Ôò$\overrightarrow{AF}$=£¨¡¡¡¡£©
A£®$\frac{2}{5}$$\overrightarrow{AB}$+$\frac{3}{5}$$\overrightarrow{AC}$B£®$\frac{3}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$C£®$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$D£®$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®É躯Êýf£¨x£©=ln£¨x-1£©+ax2+x+1£¬g£¨x£©=£¨x-1£©ex+ax2£¬a¡ÊR£®
£¨¢ñ£©µ±a=1ʱ£¬Çóº¯Êýf£¨x£©Ôڵ㣨2£¬f£¨2£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Èôº¯Êýg£¨x£©ÓÐÁ½¸öÁãµã£¬ÊÔÇóaµÄȡֵ·¶Î§£»
£¨¢ó£©Ö¤Ã÷f£¨x£©¡Üg£¨x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®º¯Êýy=x+sin|x|£¬x¡Ê[-¦Ð£¬¦Ð]µÄ´óÖÂͼÏóÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚ¡÷ABCÖУ¬a¡¢b¡¢c·Ö±ðΪ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß£¬b=1£¬ÇÒ2cosC-2a-c=0£®
£¨¢ñ£©Çó½ÇBµÄ´óС£»
£¨¢ò£©Çó¡÷ABCÍâ½ÓÔ²µÄÔ²Ðĵ½AC±ßµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªa¡¢b¡ÊR£¬ÇÒ2ab+2a2+2b2-9=0£¬ÈôMΪa2+b2µÄ×îСֵ£¬ÔòÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}0¡Üy¡Ü\sqrt{{M^2}-{x^2}}\\ x-y¡Ý-M\\ x+y¡ÜM.\end{array}\right.$ËùÈ·¶¨µÄÆ½ÃæÇøÓòÄÚÕûµã£¨ºá×ø±ê×Ý×ø±ê¾ùΪÕûÊýµÄµã£©µÄ¸öÊýΪ£¨¡¡¡¡£©
A£®9B£®13C£®16D£®18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬ÒÑÖªAB=2£¬AD=l£¬¡ÏBAD=60¡ã£¬ÈôE£¬F·Ö±ðÊÇBC£¬CDµÄÖе㣬Ôò$\overrightarrow{BF}•\overrightarrow{DE}$=£¨¡¡¡¡£©
A£®2B£®-2C£®$\frac{5}{4}$D£®$-\frac{5}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èôx£¬yÂú×ã$\left\{\begin{array}{l}y¡Ý0£¬\;\;\;\\ 2x-y¡Ý0£¬\;\;\;\\ x+y-3¡Ü0\end{array}\right.$Ôò2x+yµÄ×î´óֵΪ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÍÖÔ²$M£º\frac{x^2}{a^2}+{y^2}=1£¨{a£¾1}£©$ÓÒ¶¥µã¡¢É϶¥µã·Ö±ðΪA¡¢B£¬ÇÒÔ²O£ºx2+y2=1µÄÔ²Ðĵ½Ö±ÏßABµÄ¾àÀëΪ$\frac{{\sqrt{3}}}{2}$£®
£¨1£©ÇóÍÖÔ²MµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÔ²OÏàÇУ¬ÇÒÓëÍÖÔ²MÏཻÓÚP£¬QÁ½µã£¬Çó|PQ|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸