精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow{a}$=(2,3)与过点A(0,-3)的直线l平行,求该直线方程.

分析 由题意可得直线的斜率,可得点斜式方程,化为一般式即可.

解答 解:∵向量$\overrightarrow{a}$=(2,3)与直线l平行,
∴直线l的斜率k=$\frac{3}{2}$,
∴直线l的方程为y-(-3)=$\frac{3}{2}$(x-0),
化为一般式可得3x-2y-6=0

点评 本题考查直线的一般式方程和平行关系,涉及直线与向量的平行,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,且满足2an-Sn=1,n∈N*
(1)求数列{an}的通项公式;
(2)在数列{an}的每两项之间都按照如下规则插入一些数后,构成新数列{bn},在an和an+1两项之间插入n个数,使这n+2个数构成等差数列,求b2013的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用放缩法证明:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知sinα+sinβ=$\frac{1}{2}$,则cosα+cosβ的取值范围是[-$\frac{\sqrt{15}}{2}$,$\frac{\sqrt{15}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设非零向量$\overrightarrow{a}$与x轴、y轴正方向的夹角分别为α,β(0≤α≤π,0≤β≤π),则cos2α+cos2β=(  )
A.1B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用反证法证明:若a,b,c,d均为小于1的正数,且x=4a(1-b),y=4b(1-c),z=4c(1-d),t=4d(1-a),则x,y,z,t四个数中,至少有一个不大于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Asin(ωx+φ)+m(A>0,ω>0,0<φ<$\frac{π}{2}$)的最大值为4,最小值为0,两个对称轴间的最短距离为π,点(-$\frac{π}{3}$,1)在函数y=f(x)的图象上.
(1)求函数y=f(x)的解析式;
(2)先将函数y=f(x)的图象向下平移2个单位,再将所有的点的横坐标缩短为原来的$\frac{1}{2}$倍(纵坐标不变)得到函数y=g(x)的图象,求函数y=g(x)在(-π,π)上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.偶函数y=f(x)在(-∞,0)上是增函数,则f(x)在(0,+∞)是(  )
A.增函数B.减函数C.先增后减D.先减后增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x2≥2x,则x的取值范围是(-∞,x1]∪[2,4](x1在区间(-1,-$\frac{3}{4}$)之间).

查看答案和解析>>

同步练习册答案