精英家教网 > 高中数学 > 题目详情

【题目】如图(1)是一个仿古的首饰盒,其左视图是由一个半径为分米的半圆和矩形组成,其中长为分米,如图(2).为了美观,要求.已知该首饰盒的长为分米,容积为4立方分米(不计厚度),假设该首饰盒的制作费用只与其表面积有关,下半部分的制作费用为每平方分米2百元,上半部制作费用为每平方分米4百元,设该首饰盒的制作费用为百元.

(1)写出关于的函数解析式;

(2)当为何值时,该首饰盒的制作费用最低?

【答案】(1);(2)当分米时,该首饰盒制作费用最低.

【解析】分析:该几何体下面是一个长方体,上面是半个圆柱,由体积求得,然后分别求出上半部分和下半部分的面积,从而可得关于的解析式,注意要由可求得的取值范围.

(2)利用导数可求得的最小值.

详解:(1)由题知

.

又因,得

.

(2)令

,函数为增函数.

时,最小.

答:当分米时,该首饰盒制作费用最低.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C0 ,动圆C1 .点A1 , A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点.

(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2 与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2 . 若矩形ABCD与矩形A′B′C′D′的面积相等,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:

p,q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件;

若p为:x∈R,x2+2x+2≤0,则p为:x∈R,x2+2x+2>0;

若椭圆的两个焦点为F1,F2,且弦AB过点F1,则△ABF2的周长为16;

若a<0,-1<b<0,则ab>ab2>a.

所有正确命题的序号为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c.已知A= ,bsin( +C)﹣csin( +B)=a,
(1)求证:B﹣C=
(2)若a= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)

(1)求的值;

(2)求,求的值;

(3)画出函数的图像.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足,且上为增函数,,则不等式的解集为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用二分法求函数的一个正零点的近似值(精确度为0.1)时,依次计算得到如下数据:f1)=–2f1.5)=0.625f1.25≈–0.984f1.375≈–0.260,关于下一步的说法正确的是( )

A. 已经达到精确度的要求,可以取1.4作为近似值

B. 已经达到精确度的要求,可以取1.375作为近似值

C. 没有达到精确度的要求,应该接着计算f1.4375

D. 没有达到精确度的要求,应该接着计算f1.3125

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,双曲线 =1(a,b>0)的两顶点为A1 , A2 , 虚轴两端点为B1 , B2 , 两焦点为F1 , F2 . 若以A1A2为直径的圆内切于菱形F1B1F2B2 , 切点分别为A,B,C,D.则: (Ⅰ)双曲线的离心率e=
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值 =

查看答案和解析>>

同步练习册答案