精英家教网 > 高中数学 > 题目详情
17.在面积为$\sqrt{15}$的△ABC中,角A、B、C的对边分别为a、b、c,且c+bsinAtanB=4a+bcosA,sinA=2sinC,则a+c=6.

分析 将切化弦,利用两角和差的余弦公式化简,结合a=2c和余弦定理得出b,c的关系,利用三角形的面积列方程解出三角形的边长.

解答 解:∵c+bsinAtanB=4a+bcosA,∴ccosB+bsinAsinB=4acosB+bcosAcosB,
∴(c-4a)cosB=b(cosAcosB-sinAsinB)=bcos(A+B)=-bcosC.
∵sinA=2sinC,∴a=2c,
∴-7ccosB=-bcosC.
∴7c×$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=b×$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,即3a2+4c2-4b2=0,
∵a=2c,∴12c2+4c2=4b2,∴b=2c.
∴a=b=2c.
∴△ABC是等腰三角形,设AB边上的高为h,则h=$\sqrt{{a}^{2}-\frac{{c}^{2}}{4}}$=$\frac{\sqrt{15}}{2}c$.
∴S=$\frac{1}{2}ch$=$\frac{1}{2}×c×\frac{\sqrt{15}}{2}c$=$\sqrt{15}$.解得c=2.
∴a+c=3c=6.
故答案为6.

点评 本题考查了正余弦定理,三角函数的恒等变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|(x-4)(x+2)<0},B={-3,-1,1,3,5},则A∩B=(  )
A.{-1,1,3}B.{-3,-1,1,3}C.{-1,1,3,5}D.{-3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知A,B,C为圆O上三点,CO的延长线与线段AB的延长线交于圆O外一点D,且|OD|=2|OC|,若$\overrightarrow{OC}$=p$\overrightarrow{OA}$+q$\overrightarrow{OB}$,则p+q的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知四边形PQRS是圆内接四边形,∠PSR=90°,过点Q作PR、PS的垂线,垂足分别为点H、K.
(1)求证:Q、H、K、P四点共圆;
(2)求证:QT=TS.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知n=${∫}_{1}^{e}\frac{6}{x}$dx,那么${({x^2}-\frac{1}{x})^n}$的展开式中的常数项为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知关于x的不等式2x2-2mx+m<0的解集为A,若集合A中恰好有两个整数,则实数m的取值范围是($\frac{8}{3}$,$\frac{18}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:$\sqrt{3}$+2sinx=0.
(1)若x∈[-π,π],求x;
(2)若x∈[0,2π],求x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=${(\frac{1}{2})}^{|x|}$-$\frac{1}{1+lo{g}_{\frac{1}{2}}(1+|x|)}$,使得f(x)>f(2x-1)成立的x的取值范围是(-∞,-1)∪(-1,$\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设I={x|x2≤50,x∈N},M∩L={2,3},$\overline{M}$∩L={1,6},$\overline{M}$∩$\overline{L}$={5},求M和L.

查看答案和解析>>

同步练习册答案