精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)若直线不过点M,求证:直线MA、MB与x轴围成一个等腰三角形

(Ⅰ);(Ⅱ);(Ⅲ)参考解析

解析试题分析:(Ⅰ)已知椭圆的焦点在x轴上,离心率为,且经过点,利用待定系数法求出椭圆的方程.
(Ⅱ)由于直线交椭圆于不同的两点A,B.所以直线与椭圆方程联立消去y后,得到关于x的一元二次方程,这个方程的的判别式要大于零即可求出m的范围.
(Ⅲ)直线不过点M,要求证直线MA、MB与x轴围成一个等腰三角形.将该问题等价转化为直线MA与直线MB的斜率何为零.所以通过计算两直线的斜率,并用A,B的坐标表示,通过通分整理再结合(Ⅱ)所得的韦达定理即可得分子为零.及证明了斜率和为零从而可结论.
试题解析:(Ⅰ)设椭圆的方程为,因为,所以,又因为,所以,解得,故椭圆方程为 
(Ⅱ)将代入并整理得,解得 
(Ⅲ)设直线的斜率分别为,只要证明.设



考点:1.待定系数求椭圆方程.2.直线与椭圆的位置关系.3.直线与椭圆的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆两焦点坐标分别为,,一个顶点为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为的直线,使直线与椭圆交于不同的两点,满足. 若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左、右焦点,且点在椭圆上.
(1)求椭圆的方程;
(2)过的直线交椭圆两点,则的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的离心率为在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中是过抛物线焦点的两条弦,且其焦点,点轴上一点,记,其中为锐角.

(1)求抛物线方程;
(2)如果使“蝴蝶形图案”的面积最小,求的大小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的方程为,双曲线的两条渐近线为.过椭圆的右焦点作直线,使,又交于点,设与椭圆的两个交点由上至下依次为.

(1)若的夹角为,且双曲线的焦距为,求椭圆的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在求出点坐标;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线,求曲线过点的切线方程。

查看答案和解析>>

同步练习册答案