如图,已知点
为椭圆![]()
右焦点,圆![]()
与椭圆
的一个公共点为
,且直线
与圆
相切于点
.![]()
(1)求
的值及椭圆
的标准方程;
(2)设动点
满足
,其中M、N是椭圆
上的点,
为原点,直线OM与ON的斜率之积为
,求证:
为定值.
(1)
;(2)证明过程详见解析.
解析试题分析:本题主要考查椭圆的标准方程以及几何性质等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,由椭圆C过点(0,1)点,所以得到
,由
,得
,在直角三角形AFB中,利用勾股定理求参数a,c的值,从而得到椭圆的标准方程;第二问,设出点M,N,P的坐标,代入到
中,得到
与
、
的关系,得到
与
、
的关系,又由于点M,N在椭圆上,代入椭圆方程中,得到关系式,都代入到所求的式子中,化简得到定值.
试题解析:(1)由题意可知
,又
.又
. 2分
在
中,
,![]()
故椭圆的标准方程为:
6分
(2)设![]()
∵M、N在椭圆上,∴![]()
又直线OM与ON的斜率之积为
,∴
,
于是![]()
.故
为定值. 13分
考点:椭圆的标准方程以及几何性质.
科目:高中数学 来源: 题型:解答题
设椭圆
的中心和抛物线
的顶点均为原点
,
、
的焦点均在
轴上,过
的焦点F作直线
,与
交于A、B两点,在
、
上各取两个点,将其坐标记录于下表中:![]()
![]()
(1)求
,
的标准方程;
(2)若
与
交于C、D两点,
为
的左焦点,求
的最小值;
(3)点
是
上的两点,且
,求证:
为定值;反之,当
为此定值时,
是否成立?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
在抛物线
上,直线
(
,且
)与抛物线
,相交于
、
两点,直线
、
分别交直线
于点
、
.
(1)求
的值;
(2)若
,求直线
的方程;
(3)试判断以线段
为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
巳知椭圆
的离心率是
.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线
,使点C(2,0)关于直线
的对称点在椭圆上,求椭圆的焦距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,设曲线C1:
所围成的封闭图形的面积为
,曲线C1上的点到原点O的最短距离为
.以曲线C1与坐标轴的交点为顶点的椭圆记为C2.
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.M是l上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若M是l与椭圆C2的交点,求△AMB的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知
、
、
是长轴长为
的椭圆
上的三点,点
是长轴的一个端点,
过椭圆中心
,且
,
.![]()
(1)求椭圆
的方程;
(2)在椭圆
上是否存点
,使得
?若存在,有几个(不必求出
点的坐标),若不存在,请说明理由;
(3)过椭圆
上异于其顶点的任一点
,作圆
的两条线,切点分别为
、
,,若直线
在
轴、
轴上的截距分别为
、
,证明:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆C:
的左顶点为A,M是椭圆C上异于点A的任意一点,点P与点A关于点M对称.![]()
(1)若点P的坐标
,求m的值;
(2)若椭圆C上存在点M,使得
,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,右焦点为(
,0).
(1)求椭圆
的方程;
(2)若过原点
作两条互相垂直的射线,与椭圆交于
,
两点,求证:点
到直线
的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,M、N分别是椭圆
=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.![]()
(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB..
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com