精英家教网 > 高中数学 > 题目详情
11.设x=$\frac{π}{6}$,则tan(π+x)等于(  )
A.-$\frac{\sqrt{3}}{3}$B.-$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

分析 由条件利用诱导公式求得所给式子的值.

解答 解:由于x=$\frac{π}{6}$,故tan(π+x)=tanx=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$,
故选:C.

点评 本题主要考查利用诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.数列{an}满足2an=an-1+an+1(n≥2),且a1+a3+a5=9,a3+a5+a7=15则a3+a4+a5=(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数y=f(x)是函数y=($\frac{1}{2}$)x的反函数,则f(4)=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5-b,P=$(\frac{1}{7}{)^c}$,则M、N、P的大小关系为(  )
A.M>N>PB.P<M<NC.N>P>MD.P>N>M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a>0,b>0,若$\sqrt{3}$是93a与3b的等比中项,则$\frac{2}{a}+\frac{1}{b}$的最小值为(  )
A.1B.13+$4\sqrt{3}$C.2$\sqrt{3}$D.$\frac{13}{2}+2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知平面α截一球O得圆M,圆M的半径为r,圆M上两点A、B间的弧长为$\frac{πr}{2}$,又球心O到平面α的距离为r,则A、B两点间的球面距离为$\frac{{\sqrt{2}πr}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算$\lim_{n→∞}\frac{2n+1}{n+2}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=ex+x2-x,若对任意x1,x2∈[-2,2],|f(x1)-f(x2)|≤k恒成立,则k的取值范围是(  )
A.[e2-1,+∞)B.[e2,+∞)C.[e2+1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合A={x|x≤2},B={x|$\frac{1}{x-1}>0$},则(∁UA)∩B=(  )
A.[-2,1]B.(2,+∞)C.(1,2)D.(-∞,-2)

查看答案和解析>>

同步练习册答案