精英家教网 > 高中数学 > 题目详情
6.已知在极坐标系中曲线C是以点(1,$\frac{π}{4}$)为圆心,以1为半径的圆,以极点为坐标系原点O,极轴为x轴的非负半轴,且单位长度相同建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)写出l的普通方程及曲线C的极坐标方程;
(2)判断l与C是否相交,若相交,设交点为P,Q两点,求线段PQ的长,若不相交,说明理由.

分析 (1)将直线l的参数方程两式相减即可消去参数t得出普通方程,求出曲线C的直角坐标方程,再转化为极坐标方程;
(2)将直线l的参数方程代入圆C的直角坐标方程得出关于参数t方程,根据方程解的个数判断位置关系,利用根与系数的关系和参数的几何意义计算|PQ|.

解答 解:(1)∵直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),
∴x-y=-1,即x-y+1=0.∴直线l的普通方程为x-y+1=0;
极坐标(1,$\frac{π}{4}$)对应的直角坐标为($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),
∴圆C的标准方程为(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{\sqrt{2}}{2}$)2=1,即x2+y2-$\sqrt{2}$x-$\sqrt{2}$y=0.
又x=ρcosθ,y=ρsinθ,
∴ρ2-$\sqrt{2}$ρcosθ-$\sqrt{2}$ρsinθ=0,即ρ=$\sqrt{2}$cosθ+$\sqrt{2}$sinθ.
∴曲线C的极坐标方程为ρ=$\sqrt{2}$cosθ+$\sqrt{2}$sinθ.
(2)把直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)代入曲线C的直角坐标方程x2+y2-$\sqrt{2}$x-$\sqrt{2}$y=0,
得:t2-(2+$\sqrt{2}$)t+$\sqrt{2}$+1=0,
∵△=(2+$\sqrt{2}$)2-4($\sqrt{2}+1$)=2>0,
∴方程t2-(2+$\sqrt{2}$)t+$\sqrt{2}$+1=0有两解t1,t2
∴t1+t2=2+$\sqrt{2}$,t1t2=$\sqrt{2}+1$.
∴|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{2}$.
∴直线l与圆C相交,|PQ|=$\sqrt{2}$.

点评 本题考查了极坐标方程,参数方程与普通方程的转化,参数的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=2x-\frac{a}{x}$,且f(1)=3
(1)求a的值;
(2)判断函数的奇偶性;
(3)证明函数f(x)在(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列四个命题:
①函数y=|x|与函数$y={(\sqrt{x})^2}$表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
④函数y=3(x-1)2的图象可由y=3x2的图象向右平移一个单位得到;
⑤设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;
其中正确命题的序号是④⑤.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a=2${∫}_{-3}^{3}$(x+|x|)dx,则在${(\sqrt{x}-\frac{1}{\root{3}{x}})}^{a}$的展开式中,x的幂指数不是整数的项共有(  )
A.13项B.14项C.15项D.16项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=x ln x-ax2+(2a-1)x,a∈R.
(Ⅰ)令g(x)=f′(x ),求 g(x)的单调区间;
(Ⅱ)当a≤0时,直线 y=t(-1<t<0)与f(x)的图象有两个交点A(x1,t),B(x2,t),且x1<x2,求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆O:x2+y2=4(O为坐标原点)经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴端点和两个焦点,则椭圆C的标准方程为(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x-2≤0\\ x+y-2≥0\end{array}\right.$,则z=x-2y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合U=R,A={x|(x-2)(x+1)≤0},B={x|0≤x<3},则∁U(A∪B)=(  )
A.(-1,3)B.(-∞,-1]∪[3,+∞)C.[-1,3]D.(-∞,-1)∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=ex+e-x,则y=f′(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案