精英家教网 > 高中数学 > 题目详情
11.已知圆O:x2+y2=4(O为坐标原点)经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴端点和两个焦点,则椭圆C的标准方程为(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1

分析 根据圆O:x2+y2=4(O为坐标原点)经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴端点和两个焦点,可得b,c,a,

解答 解:∵圆O:x2+y2=4(O为坐标原点)经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴端点和两个焦点,
∴b=2,c=2,则a2=b2+c2=8.
∴椭圆C的标准方程为:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,
故选:B

点评 本题考查了椭圆的方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.如果实数x,y满足不等式组$\left\{\begin{array}{l}x≥1\\ x-y+1≤0\\ 2x-y-2≤0\end{array}\right.$则目标函数z=3x-2y的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xlnx,e为自然对数的底数.
(1)求曲线y=f(x)在x=e-2处的切线方程;
(2)关于x的不等式f(x)≥λ(x-1)在(0,+∞)上恒成立,求实数λ的值;
(3)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1-x2|<2a+1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.春节期间商场为活跃节日气氛,特举行“购物有奖”抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为$\frac{2}{3}$,每次中奖可以获得20元购物代金券,方案乙的中奖率为$\frac{2}{5}$,每次中奖可以获得30元购物代金券,未中奖则不获得购物代金券,每次抽奖中奖与否互不影响,已知小明通过购物获得了2次抽奖机会.
(1)若小明选择方案甲、乙各抽奖一次,记他累计获得的购物代金券面额之和为X,求X≤30的概率;
(2)设小明两次抽奖都选择方案甲或都选择方案乙,且都选择方案乙时,已算得,累计获得的购物代金券面额之和X1的数学期望E(X1)=24,问:小明选择这两种方案中的何种方案抽奖,累计获得的购物代金券面额之和的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在极坐标系中曲线C是以点(1,$\frac{π}{4}$)为圆心,以1为半径的圆,以极点为坐标系原点O,极轴为x轴的非负半轴,且单位长度相同建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)写出l的普通方程及曲线C的极坐标方程;
(2)判断l与C是否相交,若相交,设交点为P,Q两点,求线段PQ的长,若不相交,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a为实数,直线l1:ax+y=1,l2:x+ay=2a,则“a=-1”是“l1∥l2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)对定义域内R内的任意x都有f(x)=f(4-x),且当x≠2时,其导数f'(x)满足xf'(x)>2f'(x),若2<a<4,则(  )
A.$f({2^x})<f(\frac{lna}{a})<f[{(\frac{lna}{a})^2}]$B.$f(\frac{lna}{a})<f[{(\frac{lna}{a})^2}]<f({2^x})$
C.$f(\frac{lna}{a})<f({2^x})<f[{(\frac{lna}{a})^2}]$D.$f({2^x})<f[{(\frac{lna}{a})^2}]<f(\frac{lna}{a})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x,y满足$\left\{\begin{array}{l}y≤-|x|+2\\ x+2y+2≥0\end{array}\right.$,则z=x-2y的最大值为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$为同一平面内两个不共线向量,且$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=k$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}∥\overrightarrow{b}$,则k的值为(  )
A.$-\frac{8}{3}$B.$-\frac{4}{3}$C.$-\frac{3}{4}$D.$-\frac{3}{2}$

查看答案和解析>>

同步练习册答案