精英家教网 > 高中数学 > 题目详情
16.设a为实数,直线l1:ax+y=1,l2:x+ay=2a,则“a=-1”是“l1∥l2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也必要条件

分析 根据充分必要条件的定义,结合直线平行的性质及判定分别进行判断即可.

解答 解:l1∥l2”得到:a2-1=0,解得:a=-1或a=1,
所以应是充分不必要条件.
故选:A

点评 本题考查了充分必要条件,考查直线平行的充要条件,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知定义在R上的函数f(x)满足f(1-x)=f(1+x),且f(x)在[1,+∞)为递增函数,若不等式f(1-m)<f(m)成立,则m的取值范围是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F作x轴的垂线与双曲线交于B,C两点(点B在x轴上方),过点B作斜率为负数的渐近线的垂线,过点C作斜率为正数的渐近线的垂线,两垂线交于点D,若D到直线BC的距离小于虚轴长的2倍,则双曲线的离心率e的取值范围是(  )
A.1<e<$\sqrt{3}$B.e>$\sqrt{3}$C.1<e<$\sqrt{5}$D.e>$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(2x+$\frac{π}{6}$)+cos2x,则f(x)的一个单调递减区间是(  )
A.[$\frac{π}{12}$,$\frac{7π}{12}$]B.[-$\frac{5π}{12}$,$\frac{π}{12}$]C.[-$\frac{π}{3}$,$\frac{2π}{3}$]D.[-$\frac{π}{6}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆O:x2+y2=4(O为坐标原点)经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴端点和两个焦点,则椭圆C的标准方程为(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设min{m,n}表示m、n二者中较小的一个,已知函数f(x)=x2+8x+14,g(x)=min{($\frac{1}{2}$)x-2,log2(4x)}(x>0),若?x1∈[-5,a](a≥-4),?x2∈(0,+∞),使得f(x1)=g(x2)成立,则a的最大值为(  )
A.-4B.-3C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-3x+2≤0},B={x|2x-3>0},则A∩B=(  )
A.$(1,\frac{3}{2})$B.$[1,\frac{3}{2})$C.$(\frac{3}{2},2]$D.$[\frac{3}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于x的方程xlnx-kx+1=0在区间[$\frac{1}{e}$,e]上有两个不等实根,则实数k的取值范围是(  )
A.(1,1+$\frac{1}{e}$]B.(1,e-1]C.[1+$\frac{1}{e}$,e-1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等比数列{an}中,各项都是正数,且3a1,$\frac{1}{2}$a3,2a2成等差数列,则$\frac{{{a_{2016}}+{a_{2017}}}}{{{a_{2015}}+{a_{2016}}}}$等于(  )
A.3B.9C.27D.81

查看答案和解析>>

同步练习册答案