精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|x2-3x+2≤0},B={x|2x-3>0},则A∩B=(  )
A.$(1,\frac{3}{2})$B.$[1,\frac{3}{2})$C.$(\frac{3}{2},2]$D.$[\frac{3}{2},2)$

分析 求出A与B中不等式的解集确定出A与B,找出A与B的交集即可.

解答 解:由A中不等式变形得:(x-1)(x-2)≤0,
解得:1≤x≤2,即A=[1,2],
由B中不等式解得:x>$\frac{3}{2}$,即B=($\frac{3}{2}$,+∞),
则A∩B=($\frac{3}{2}$,2],
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若$tana=\frac{1}{2}$,$tanb=\frac{1}{3}$,则tan(a+b)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.春节期间商场为活跃节日气氛,特举行“购物有奖”抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为$\frac{2}{3}$,每次中奖可以获得20元购物代金券,方案乙的中奖率为$\frac{2}{5}$,每次中奖可以获得30元购物代金券,未中奖则不获得购物代金券,每次抽奖中奖与否互不影响,已知小明通过购物获得了2次抽奖机会.
(1)若小明选择方案甲、乙各抽奖一次,记他累计获得的购物代金券面额之和为X,求X≤30的概率;
(2)设小明两次抽奖都选择方案甲或都选择方案乙,且都选择方案乙时,已算得,累计获得的购物代金券面额之和X1的数学期望E(X1)=24,问:小明选择这两种方案中的何种方案抽奖,累计获得的购物代金券面额之和的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a为实数,直线l1:ax+y=1,l2:x+ay=2a,则“a=-1”是“l1∥l2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)对定义域内R内的任意x都有f(x)=f(4-x),且当x≠2时,其导数f'(x)满足xf'(x)>2f'(x),若2<a<4,则(  )
A.$f({2^x})<f(\frac{lna}{a})<f[{(\frac{lna}{a})^2}]$B.$f(\frac{lna}{a})<f[{(\frac{lna}{a})^2}]<f({2^x})$
C.$f(\frac{lna}{a})<f({2^x})<f[{(\frac{lna}{a})^2}]$D.$f({2^x})<f[{(\frac{lna}{a})^2}]<f(\frac{lna}{a})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2-2x-3>0},B={x|lg(x-2)≤0},则(∁RA)∪B=(  )
A.(-1,3)B.(2,3)C.(2,3]D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x,y满足$\left\{\begin{array}{l}y≤-|x|+2\\ x+2y+2≥0\end{array}\right.$,则z=x-2y的最大值为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,如果x1+x2=$\frac{2π}{3}$,则f(x1)+f(x2)=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.0D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若将函数y=sin(6x+$\frac{π}{4}$)图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再将所得图象沿x轴向右平移$\frac{π}{8}$个单位长度,则所得图象的一个对称中心是(  )
A.($\frac{π}{16}$,0)B.($\frac{π}{9}$,0)C.($\frac{π}{4}$,0)D.($\frac{π}{2}$,0)

查看答案和解析>>

同步练习册答案