精英家教网 > 高中数学 > 题目详情
18.若$tana=\frac{1}{2}$,$tanb=\frac{1}{3}$,则tan(a+b)=1.

分析 由条件利用两角和的正切公式,求得tan(a+b)的值.

解答 解:若$tana=\frac{1}{2}$,$tanb=\frac{1}{3}$,则tan(a+b)=$\frac{tana+tanb}{1-tana•tanb}$=1,
故答案为:1.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别是a,b,c,$a=2\sqrt{2}$,${sinC}=\sqrt{2}sinA$.
(Ⅰ)求边c的值;
(Ⅱ) 若$cosC=\frac{{\sqrt{2}}}{4}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知集合A={(x,y)|3x-y=7},集合B={(x,y)|2x+y=3},则A∩B={(2,-1)}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知定义在R上的函数f(x)满足f(1-x)=f(1+x),且f(x)在[1,+∞)为递增函数,若不等式f(1-m)<f(m)成立,则m的取值范围是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数 f′(x)的图象如图所示.
x-1045
f(x)1221
下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数;
③若x∈[-1,t]时,f(x)的最大值是2,则t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点
其中是真命题的是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若sinα=3cosα,则$\frac{sin2α}{{{{cos}^2}α}}$=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l:y=-x+3与椭圆C:mx2+ny2=1(n>m>0)有且只有一个公共点P(2,1).
(I)求椭圆C的标准方程;
(II)若直线l′:y=-x+b交C于A,B两点,且PA⊥PB,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F作x轴的垂线与双曲线交于B,C两点(点B在x轴上方),过点B作斜率为负数的渐近线的垂线,过点C作斜率为正数的渐近线的垂线,两垂线交于点D,若D到直线BC的距离小于虚轴长的2倍,则双曲线的离心率e的取值范围是(  )
A.1<e<$\sqrt{3}$B.e>$\sqrt{3}$C.1<e<$\sqrt{5}$D.e>$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-3x+2≤0},B={x|2x-3>0},则A∩B=(  )
A.$(1,\frac{3}{2})$B.$[1,\frac{3}{2})$C.$(\frac{3}{2},2]$D.$[\frac{3}{2},2)$

查看答案和解析>>

同步练习册答案