精英家教网 > 高中数学 > 题目详情
6.已知定义在R上的函数f(x)满足f(1-x)=f(1+x),且f(x)在[1,+∞)为递增函数,若不等式f(1-m)<f(m)成立,则m的取值范围是(-∞,$\frac{1}{2}$).

分析 定义在R上的函数f(x)满足f(1-x)=f(1+x),可得函数f(x)关于直线x=1对称.f(x)在[1,+∞)为递增函数,f(x)在(-∞,1]为递减函数.不等式f(1-m)<f(m)成立,即f(1+m)<f(m).对m分类讨论即可得出.

解答 解:定义在R上的函数f(x)满足f(1-x)=f(1+x),∴函数f(x)关于直线x=1对称.
f(x)在[1,+∞)为递增函数,f(x)在(-∞,1]为递减函数.
不等式f(1-m)<f(m)成立,即f(1+m)<f(m).
∵1+m>m.
则当m≥1时,f(1+m)<f(m)不成立,舍去;
当m+1≤1,即m≤0时,总有f(m+1)<f(m),)恒成立,因此m≤0满足条件;
当m<1<1+m时,即0<m<1.要使f(m)>f(m+1)恒成立,必须点M(m,f(m))到直线x=1的距离大于点N(m+1,f(m+1))到直线x=1的距离,即1-m>m+1-1,解得m$<\frac{1}{2}$.∴$0<m<\frac{1}{2}$.
综上所述,m的取值范围是:(-∞,$\frac{1}{2}$).
故答案为:(-∞,$\frac{1}{2}$).

点评 本题考查了抽象函数的单调性对称性、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}的前n项和为Sn,若a1=2,a8+a10=28,则S9=(  )
A.36B.72C.144D.288

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\frac{2x}{x-1}≥a$在区间[3,5]上恒成立,则实数a的最大值是(  )
A.3B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合P={a|不等式x2+ax+$\frac{1}{16}$≤0有解},集合Q={a|不等式ax2+4ax-4<0对任意实数x恒成立},求P∩Q.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果实数x,y满足不等式组$\left\{\begin{array}{l}x≥1\\ x-y+1≤0\\ 2x-y-2≤0\end{array}\right.$则目标函数z=3x-2y的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知虚数z满足$z+\frac{1}{z}∈R$,且|z-2|=2,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$tana=\frac{1}{2}$,$tanb=\frac{1}{3}$,则tan(a+b)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x-2,那么不等式$f(x)<\frac{1}{2}$的解集是(  )
A.$\left\{{x|0<x<\frac{5}{2}}\right\}$B.$\left\{{x|x<-\frac{3}{2}\;,\;\;或0≤x<\frac{5}{2}}\right\}$
C.$\left\{{x|-\frac{3}{2}<x<0\;,\;\;或0≤x<\frac{5}{2}}\right\}$D.$\left\{{x|-\frac{3}{2}<x<0}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a为实数,直线l1:ax+y=1,l2:x+ay=2a,则“a=-1”是“l1∥l2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也必要条件

查看答案和解析>>

同步练习册答案