精英家教网 > 高中数学 > 题目详情
20.已知x,y满足$\left\{\begin{array}{l}y≤-|x|+2\\ x+2y+2≥0\end{array}\right.$,则z=x-2y的最大值为14.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}y≤-|x|+2\\ x+2y+2≥0\end{array}\right.$作出可行域如图,

化目标函数z=x-2y为$y=\frac{x}{2}-\frac{z}{2}$,
由图可知,当直线$y=\frac{x}{2}-\frac{z}{2}$过点A(6,-4)时,直线在y轴上的截距最小,z有最大值为14.
故答案为:14.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知直线l:y=-x+3与椭圆C:mx2+ny2=1(n>m>0)有且只有一个公共点P(2,1).
(I)求椭圆C的标准方程;
(II)若直线l′:y=-x+b交C于A,B两点,且PA⊥PB,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆O:x2+y2=4(O为坐标原点)经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴端点和两个焦点,则椭圆C的标准方程为(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-3x+2≤0},B={x|2x-3>0},则A∩B=(  )
A.$(1,\frac{3}{2})$B.$[1,\frac{3}{2})$C.$(\frac{3}{2},2]$D.$[\frac{3}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合U=R,A={x|(x-2)(x+1)≤0},B={x|0≤x<3},则∁U(A∪B)=(  )
A.(-1,3)B.(-∞,-1]∪[3,+∞)C.[-1,3]D.(-∞,-1)∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于x的方程xlnx-kx+1=0在区间[$\frac{1}{e}$,e]上有两个不等实根,则实数k的取值范围是(  )
A.(1,1+$\frac{1}{e}$]B.(1,e-1]C.[1+$\frac{1}{e}$,e-1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=[x2-(n+1)x+1]ex-1,g(x)=$\frac{f(x)}{{x}^{2}+1}$,n∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当f(x)在R上单调递增时,证明:对任意x1,x2∈R且x1≠x2,$\frac{g({x}_{2})+g({x}_{1})}{2}$>$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设变量x,y满足不等式组$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则x2+y2的最小值是(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b,c满足c<a<b,且ac<0,那么下列各式中一定成立(  )
A.ac(a-c)>0B.c(b-a)<0C.cb2<ab2D.ab>ac

查看答案和解析>>

同步练习册答案