精英家教网 > 高中数学 > 题目详情
设平面向量
am
=(m,1),
bn
=(2,n),其中m,n∈{1,2,3,4}.
(1)请列出有序数组(m,n)的所有可能结果;
(2)若“使得
am
⊥(
am
-
bn
)成立的(m,n)”为事件A,求事件A发生的概率.
考点:列举法计算基本事件数及事件发生的概率,平面向量数量积的运算
专题:概率与统计
分析:(1)不重不漏的一一列举出所有的基本事件,即可.
(2)由题意得到n=(m-1)2,找到满足条件的基本事件,根据概率公式计算即可.
解答: 解:(1)有序数组(m,n)的所有可能结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.
(2)由am⊥(am-bn),得m2-2m+1-n=0,即n=(m-1)2,由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个,又基本事件的总数为16,故所求的概率为P(A)=
2
16
=
1
8
点评:本题主要考查了古典概型的概率的求法,关键是找到满足条件的基本事件,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,且满足
(2a-c)cosB
b
=cosC.
(1)求角B的大小;
(2)设
m
=(sinA,cos2A),
n
=(4k,1)(k>0),且
m
n
的最大值是5,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+2(a-1)x在区间(-∞,4]上是减函数,求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,BC=2,CD=
2
,BD⊥CD,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点
(1)求证:GH∥平面CDE
(2)求平面ECF与平面ABCD所成的二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中画出y=|x2+2x-3|的图象,并讨论关于x的方程|x2+2x-3|=a的实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a+1)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx在区间[-1,1]上是减函数.
(Ⅰ)求实数a的值;
(Ⅱ)若g(x)≤λt-1在x∈[-1,1]上恒成立,求实数t的最大值;
(Ⅲ)若关于x的方程
lnx
f(x)
=x2-2ex+m有且只有一个实数根,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:
sin(π-α)cos(π+α)
cos(
2
-α)tan(
2
+α)

(2)已知sinα+cosα=
1
5
,点P(-tanα,cosα)在第四象限,求
sinα-cosα
0.2+sinαcosα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

由1,2,3,4,5组成的五位数字,恰有2个数位上的数字重复且十位上的数字大于百位上的数字的五位数的个数是
 
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an+1=
an
1+2an
,则a5=
 

查看答案和解析>>

同步练习册答案