精英家教网 > 高中数学 > 题目详情
5.设函数{an}为等差数列,且a3=5,a5=9,数列{bn}的前n项和为Sn,且Sn+bn=2.
(1)求数列{an},{bn}的通项公式;
(2)若Tn=a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1,求Tn

分析 (1)根据等差数列的性质列方程组解出首项和公差,得出{an}的通项公式,利用bn=Sn-Sn-1得出{bn}是等比数列;
(2)使用错位相减法求和.

解答 解:(1)设{an}的公差为d,
则$\left\{\begin{array}{l}{{a}_{1}+2d=5}\\{{a}_{1}+4d=9}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$.
∴an=1+2(n-1)=2n-1.
∵Sn+bn=2,∴Sn=2-bn
∴n=1时,2b1=2,∴b1=1.
当n≥2时,bn=Sn-Sn-1=2-bn-(2-bn-1),
∴bn=$\frac{1}{2}$bn-1
∴{bn}是以1为首项,以$\frac{1}{2}$为公比的等比数列.
∴bn=$\frac{1}{{2}^{n-1}}$.
(2)Tn=1$•\frac{1}{{2}^{n-1}}$+3•$\frac{1}{{2}^{n-2}}$+5$•\frac{1}{{2}^{n-3}}$+…+(2n-3)$•\frac{1}{2}$+(2n-1)•1,①
∴$\frac{1}{2}$Tn=1•$\frac{1}{{2}^{n}}$+3•$\frac{1}{{2}^{n-1}}$+5$•\frac{1}{{2}^{n-2}}$+…+(2n-3)•$\frac{1}{{2}^{2}}$+(2n-1)$•\frac{1}{2}$,②
①-②得:$\frac{1}{2}{T}_{n}$=-2($\frac{1}{{2}^{n-1}}$+$\frac{1}{{2}^{n-2}}$+$\frac{1}{{2}^{n-3}}$+…+$\frac{1}{2}$)+2n-1-$\frac{1}{{2}^{n}}$
=-2•$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$+2n-1-$\frac{1}{{2}^{n}}$=$\frac{3}{{2}^{n}}$+2n-3.
∴Tn=$\frac{3}{{2}^{n-1}}$+4n-6.

点评 本题考查了等差数列,等比数列的性质,错位相减法数列求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=1+2sinxcosx
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-$\frac{π}{2}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x>$\frac{1}{2}$,那么函数y=2x+2+$\frac{1}{2x-1}$的最小值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数$\frac{2+3i}{3-2i}$=a+bi(a,b∈R,i为虚数单位),则ba=(  )
A.1B.-1C.0D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过点M(2,1),斜率为4的直线l与双曲线交于A,B两点,且点M恰好为线段AB的中点,则双曲线的一条渐近线方程为(  )
A.2x-y=0B.y=xC.$\sqrt{3}$x-y=0D.$\sqrt{2}x$+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示,求一个棱长为$\sqrt{2}$的正四面体的体积,可以看成一个棱长为1的正方体切去四个角后得到,类比这种分法,一个相对棱长都相等的四面体A-BCD,其三组棱长分别为AB=CD=$\sqrt{5}$,AD=BC=$\sqrt{13}$,AC=BD=$\sqrt{10}$,则此四面体的体积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的S的值为(  )
A.28B.12C.20D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={x|x≥0,x∈R},N={x|x<1,x∈R},则M∩N=(  )
A.[0,1]B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}(n∈N*)是递增的等比数列,且a1+a4=9,a2a3=8.
(1)求{an}的通项公式;
(2)已知bn=$\frac{2}{3}{log_2}{a_n}+1,{c_n}=\frac{1}{{{b_{n-1}}{b_n}}}$(n≥2),其中c1=3,令Sn=c1+c2+c3+…+cn,若Sn<$\frac{m-2007}{2}$对一切n∈N*恒成立,求满足条件的最小整数m.

查看答案和解析>>

同步练习册答案