精英家教网 > 高中数学 > 题目详情
14.已知集合M={x|x≥0,x∈R},N={x|x<1,x∈R},则M∩N=(  )
A.[0,1]B.[0,1)C.(0,1]D.(0,1)

分析 根据交集的定义直接利用交集运算求解即可.

解答 解:∵M={x|x≥0},N={x|x<1},
∴M∩N={x|0≤x<1}=[0,1),
故选:B.

点评 本题考查了交集的定义及其运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知A是△ABC的内角,且sinA+cosA=-$\frac{7}{13}$,求tan($\frac{π}{4}$+A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数{an}为等差数列,且a3=5,a5=9,数列{bn}的前n项和为Sn,且Sn+bn=2.
(1)求数列{an},{bn}的通项公式;
(2)若Tn=a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C1:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)与抛物线C2:y2=$\frac{1}{2}$x在第一象限的交点A的横坐标为2,直线l:x-2y-$\sqrt{6}$=0过椭圆的一个焦点.
(1)求椭圆C1的方程;
(2)已知直线l'平行于直线l,且与椭圆C1交于不同的两点M,N,记直线AM的倾斜角θ1,直线AN的倾斜角为θ2,试探究θ12是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=-x2+4x+m的最大值为4,则不等式f(x)>x的解集为(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知两定点A(-2,0)、B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹方程为(x-2)2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知圆C1:(x-1)2+(y+1)2=1,圆C2:(x-4)2+(y-5)2=9.点M、N分别是圆C1、圆C2上的动点,P为x轴上的动点,则|PN|-|PM|的最大值是(  )
A.2$\sqrt{5}$+4B.9C.7D.2$\sqrt{5}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F1,F2为椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,且|F1F2|=2c,若椭圆上存在点P使得|PF1|•|PF2|=2c2,则椭圆的离心率的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切与M(3,0).
(1)求f(x)得解析式,并求y=$\frac{f(x)}{x}$+4lnx的单调减区间;
(2)是否存在两个不等正数s,t(s<t),满足$\left\{\begin{array}{l}{f(s)=t}\\{f(t)=s}\end{array}\right.$,若存在,求出所有这样的正数s,t,否则请说明理由.

查看答案和解析>>

同步练习册答案