精英家教网 > 高中数学 > 题目详情
9.设F1,F2为椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,且|F1F2|=2c,若椭圆上存在点P使得|PF1|•|PF2|=2c2,则椭圆的离心率的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

分析 由椭圆的定义可得|PF1|+|PF2|=2a,联立|PF1|•|PF2|=2c2,求出|PF2|,由|PF2|≥a-c求得椭圆的离心率的最小值.

解答 解:由椭圆的定义可得|PF1|+|PF2|=2a,
联立得$|P{F_1}|•|P{F_2}|=2{c^2}$,解得|PF2|=a-$\sqrt{{a}^{2}-2{c}^{2}}$或|PF2|=a+$\sqrt{{a}^{2}-2{c}^{2}}$.
∵a-$\sqrt{{a}^{2}-2{c}^{2}}$≤a+$\sqrt{{a}^{2}-2{c}^{2}}$,
∴由a-$\sqrt{{a}^{2}-2{c}^{2}}$≥a-c,得c≥$\sqrt{{a}^{2}-2{c}^{2}}$,
两边平方得:c2≥a2-2c2,即3c2≥a2
∴e≥$\frac{\sqrt{3}}{3}$.
即椭圆的离心率的最小值为$\frac{\sqrt{3}}{3}$.
故选:D.

点评 本题考查了椭圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若复数$\frac{2+3i}{3-2i}$=a+bi(a,b∈R,i为虚数单位),则ba=(  )
A.1B.-1C.0D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={x|x≥0,x∈R},N={x|x<1,x∈R},则M∩N=(  )
A.[0,1]B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\sqrt{x-4}$+$\sqrt{15-3x}$,下述判断中正确的是(  )
A.最大值是2,最小值是0B.最大值是3,最小值是2
C.最大值是3,最小值是1D.最大值是2,最小值是1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=x3+ax在(1,f(1))处的切线与直线x-y=0平行,则实数a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y2=2px(p>0)上一点M(x0,8)到焦点的距离是10,则x0=(  )
A.1或8B.1或9C.2或8D.2或9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}(n∈N*)是递增的等比数列,且a1+a4=9,a2a3=8.
(1)求{an}的通项公式;
(2)已知bn=$\frac{2}{3}{log_2}{a_n}+1,{c_n}=\frac{1}{{{b_{n-1}}{b_n}}}$(n≥2),其中c1=3,令Sn=c1+c2+c3+…+cn,若Sn<$\frac{m-2007}{2}$对一切n∈N*恒成立,求满足条件的最小整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的函数f(x)满足f(x+5)=f(x),且$f(x)=\left\{\begin{array}{l}-{(x+3)^2},\;\;-2≤x<0\\ x,\;\;\;0≤x<3\end{array}\right.$,则f(1)+f(2)+f(3)+…+f(2013)=810.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各项中最小的数是(  )
A.111111(2)B.150(6)C.1000(4)D.101(8)

查看答案和解析>>

同步练习册答案