精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数y=f(x)满足f(x+1)=f(x-1),当-1<x≤1时,f(x)=x3,若函数g(x)=f(x)-loga|x|恰好有6个零点,则a有取值范围是(  )
A、a∈[
1
5
1
3
]∪[3,5]
B、a∈[0,
1
5
]∪[5,+∞]
C、a∈[
1
7
1
5
]∪[5,7]
D、(
1
7
1
5
)
考点:函数零点的判定定理
专题:函数的性质及应用
分析:本题通过典型的作图画出loga|x|以及f(x)的图象,从图象交点上交点的不同,来判断函数零点个数,从而确定底数a的大小范围
解答: 解:首先将函数g(x)=f(x)-loga|x|恰有6个零点,这个问题转化成f(x)=loga|x|的交点来解决.
数形结合:如图,f(x+1)=f(x-1),知道周期为2,当-1<x≤1时,f(x)=x3图象可以画出来,同理左右平移各2个单位,得到在(-7,7)上面的图象,以下分两种情况:
(1)当a>1时,loga|x|如图所示,左侧有4个交点,右侧2个,
此时应满足loga5≤1<loga7,即loga5≤logaa<loga7,所以5≤a<7.
(2)当0<a<1时,loga|x|与f(x)交点,左侧有2个交点,右侧4个,
此时应满足loga5>-1,loga7≤-1,即loga5<-logaa≤loga7,所以5<a-1≤7.故
1
7
≤a<
1
5
综上所述,a的取值范围是:5≤a<7或
1
7
≤a<
1
5

故选:C.
点评:本题考查函数零点应用转化为两个函数交点来判断,又综合了奇函数对称性对数运算等知识,属于较难的一类题,端点也要认真考虑,极容易漏掉端点
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设随机变量ξ:N((μ,σ2),且P(ξ<-1)=P(ξ>1),P(ξ>2)=0.3,则P(-1<ξ<0)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在∠AOB的OA边上取m个点,在OB边上取n个点(均除O点外),连同O点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有(  )
A、
C
1
m+1
C
2
n
+
C
1
n+1
C
2
m
B、
C
1
m
C
2
n
+
C
1
n
C
2
m
C、
C
1
m
C
2
n
+
C
1
n
C
2
m
+
C
1
m
C
1
n
D、
C
1
m
C
2
n+1
+
C
2
m+1
C
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

在“环境保护低碳生活知识竞赛”第一环节测试中,设有A、B、C三道必答题,分值依次为20分、30分、50分.竞赛规定:若参赛选手连续两道题答题错误,则必答题总分记为零分;否则各题得分之和记为必答题总分已知某选手回答A、B、C三道题正确的概率分别为
1
2
1
3
1
4
,且回答各题时相互之间没有影响.
(I)若此选手按A、B、C的顺序答题,求其必答题总分不小于80分的概率;
(Ⅱ)若此选手可以自由选择答题顺序,求其必答题总分为50分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x,则函数y=f-1(1-x)的大致图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式组
x-y≤2
x+y≤4
x≥2
,则z=2x+y的最小值是(  )
A、2B、4C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的(  )
A、必要不充分条件
B、充分不必要条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:loga(x2-x-2)>1+loga(x-
2
a
)(a>0,a≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:

过(2,0)点作圆(x-1)2+(y-1)2=1的切线,所得切线方程为
 

查看答案和解析>>

同步练习册答案