精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,且,其前n项之和为Sn,则满足不等式的最小自然数n___.

【答案】7

【解析】试题分析:首先根据题意,将3an+1+an=4变形为3(an+1﹣1)=﹣(an﹣1),可得{an﹣1}是等比数列,结合题意,可得其前n项和公式,进而可得|Sn﹣n﹣6|=6×(﹣n;依题意,有|Sn﹣n﹣6|<,解可得答案.

详解:

根据题意,3an+1+an=4,化简可得3(an+1﹣1)=﹣(an﹣1);

{an﹣1}是首项为an﹣1=8,公比为﹣的等比数列,

进而可得Sn﹣n=(a1﹣1)+(a2﹣1)+…+(an﹣1)=

=6[1﹣(﹣n],

|Sn﹣n﹣6|=6×(﹣n

依题意,|Sn﹣n﹣6|<

即(﹣n,且nN*

分析可得满足不等式|Sn﹣n﹣6|<的最小正整数n7.

故答案为:7.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;
②用相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好;
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.
④在研究气温和热茶销售杯数的关系时,若求得相关指数R2≈0.85,则表明气温解释了15%的热茶销售杯数变化.
其中正确命题的个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三角形的边长为2,将它沿高翻折,使点与点间的距离为,此时四面体外接球表面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

I)若,求在区间上的最大值和最小值;

II)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, (O是坐标原点),其中

(1)B点坐标;

(2)求四边形OABC在第一象限部分面积 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,如果输出的 值为3,则输入 的值可以是( )

A.20
B.21
C.22
D.23

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷两颗骰子,求:

(1)向上点数之和是的倍数的概率;

(2)向上点数之和大于小于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的4月23日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各20人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图. 男生年阅读量的频率分布表(年阅读量均在区间[0,60]内):

本/年

[0,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,60]

频数

3

1

8

4

2

2


(1)根据女生的频率分布直方图估计该校女生年阅读量的中位数;
(2)在样本中,利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,再从这6人中随机抽取2人,求[30,40)这一组中至少有1人被抽中的概率;
(3)若年阅读量不小于40本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列2×2列联表,并判断是否有99%的把握认为月底丰富与性别有关.

性别 阅读量

丰富

不丰富

合计

合计

P(K2≥k0

0.025

0.010

0.005

k0

5.024

6.635

7.879

附:K2= ,其中n=a+b+c+d.

查看答案和解析>>

同步练习册答案