【题目】每年的4月23日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各20人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图. 男生年阅读量的频率分布表(年阅读量均在区间[0,60]内):
本/年 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60] |
频数 | 3 | 1 | 8 | 4 | 2 | 2 |
(1)根据女生的频率分布直方图估计该校女生年阅读量的中位数;
(2)在样本中,利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,再从这6人中随机抽取2人,求[30,40)这一组中至少有1人被抽中的概率;
(3)若年阅读量不小于40本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列2×2列联表,并判断是否有99%的把握认为月底丰富与性别有关.
性别 阅读量 | 丰富 | 不丰富 | 合计 |
男 | |||
女 | |||
合计 |
P(K2≥k0) | 0.025 | 0.010 | 0.005 |
k0 | 5.024 | 6.635 | 7.879 |
附:K2= ,其中n=a+b+c+d.
【答案】
(1)解:前三组频率之和为0.1+0.2+0.25=0.55,
∴中位数位于第三组,设中位数为a,则 = ,
∴a=38,
∴估计该校女生年阅读量的中位数为38;
(2)解:利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,从这6人中随机抽取2人,共有方法 =15种,各组分别为4人,2人,[30,40)这一组中至少有1人被抽中的概率1﹣ = ;
(3)解:
性别 阅读量 | 丰富 | 不丰富 | 合计 |
男 | 4 | 16 | 20 |
女 | 9 | 11 | 20 |
合计 | 13 | 27 | 40 |
K2= ≈2.849<6.635,
∴没有99%的把握认为月底丰富与性别有关
【解析】(1)求出前三组频率之和,即可根据女生的频率分布直方图估计该校女生年阅读量的中位数;(2)确定基本事件的个数,即可求[30,40)这一组中至少有1人被抽中的概率;(3)根据所给数据得出2×2列联表,求出K2 , 即可判断是否有99%的把握认为月底丰富与性别有关.
科目:高中数学 来源: 题型:
【题目】如图所示,三棱锥P﹣ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA= ,PB= ,则三棱锥P﹣ABC的外接球的表面积为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c= bsinC﹣ccosB.
(Ⅰ)求B的大小;
(Ⅱ)若b=2 ,求△ABC的周长和面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的中心在原点,焦点在 轴上,长轴长为4,且点 在椭圆 上.
(1)求椭圆 的方程;
(2)设 是椭圆 长轴上的一个动点,过 作斜率为 的直线 交椭圆 于 、 两点,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是东西方向的公路北侧的边缘线,某公司准备在上的一点的正北方向的处建一仓库,并在公路同侧建造一个正方形无顶中转站(其中边在上),现从仓库向和中转站分别修两条道路,,已知,且,设,.
(1)求关于的函数解析式;
(2)如果中转站四周围墙(即正方形周长)造价为万元,两条道路造价为万元,问:取何值时,该公司建中转围墙和两条道路总造价最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C: ,点 在x轴的正半轴上,过点M的直线 与抛物线C相交于A,B两点,O为坐标原点.
(1)若 ,且直线 的斜率为1,求以AB为直径的圆的方程;
(2)是否存在定点M,使得不论直线 绕点M如何转动, 恒为定值?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com