精英家教网 > 高中数学 > 题目详情
已知圆O的方程为x2+y2=13,直线l:x0x+y0y=13,设点A(x0,y0).
(1)若点A在圆O外,试判断直线l与圆O的位置关系;
(2)若点A在圆O上,且x0=2,y0>0,过点A作直线AM,AN分别交圆O于M,N两点,且直线AM和AN的斜率互为相反数.
①若直线AM过点O,求tan∠MAN的值;
②试问:不论直线AM的斜率怎么变化,直线MN的斜率是否为定值?若是,求出该定值;若不是,说明理由.
考点:直线与圆的位置关系,直线的斜率
专题:
分析:(1)由点A在圆O外,可得x02+y02 >13,求得圆心到直线的距离d小于半径,可得直线和圆相交.
(2)由条件求得点A(2,3).①若直线AM过点O,求得AM的斜率,可得AN的斜率KAN=-
3
2
,再利用两条直线的夹角公式求得tan∠MAN=|
KAM-KAN
1+KAM•KAN
|的值.
②由直线AM和AN的倾斜角互补,可得△AMN为等腰三角形,直线MN平行于x轴,故MN的斜率是0,为定值.
解答: 解:(1)∵点A在圆O外,∴x02+y02 >13,
由于圆心(0,0)到直线l:x0x+y0y=13的距离d=
13
x02+y02
13
=r,
故直线和圆相交.
(2)∵点A在圆O上,且x0=2,y0>0,可得y0=3,∴点A(2,3).
①若直线AM过点O,则AM的斜率为 KAM=
3
2
,∴KAN=-
3
2
,tan∠MAN=|
KAM-KAN
1+KAM•KAN
|=|
3
2
+
3
2
1+
3
2
(-
3
2
)
|=
12
5

②不论直线AM的斜率怎么变化,∵直线AM和AN的斜率互为相反数,
∴直线AM和AN的倾斜角互补,故△AMN为等腰三角形,
直线MN平行于x轴,故MN的斜率是0,为定值.
点评:本题主要考查点和圆的位置关系,直线和圆的位置关系,直线的倾斜角和斜率,两条直线的夹角公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若α,β满足α-β=π,那么下列式子中正确的是(  )
A、sinα=sinβ
B、sinα=-sinβ
C、cosα=cosβ
D、cosα=sinβ

查看答案和解析>>

科目:高中数学 来源: 题型:

可以用集合语言将“公理1:如果直线l上有两个点在平面α上,那么直线l在平面α上.”表述为(  )
A、A?l,B?l且A?α,B?α,则l?α
B、若A∈l,B∈l且A∈α,B∈α,则l∈α
C、若A∈l,B∈l且A∈α,B∈α,则l?α
D、若A∈l,B∈l且A?α,B?α,则l∈α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α、β、γ,则下列命题中正确的是(  )
A、α⊥β,α∩β=a,a⊥b,则b⊥α
B、α⊥β,β⊥γ,则α∥γ
C、α∩β=a,β∩γ=b,α⊥β,则a⊥b
D、α∥β,β⊥γ,则α⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
ex
x
在区间[
1
2
,2]上的最小值为(  )
A、2
e
B、
1
2
e2
C、
1
e
D、e

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于正整数n的函数f(n)=
12•1+22•3+…n2•(2n-1)
n(n+1)

(Ⅰ)求f(1)、f(2)、f(3);
(Ⅱ)是否存在常数a,b,c使得f(n)=an2+bn+c对一切自然数n都成立?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
6

(1)求函数f(x)的周期
(2)若α∈(0,
π
2
),β∈(π,2π),f(
α
2
-
π
12
)=
8
5
,f(
β
2
+
π
6
)=
10
13
,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
1
3
x3+
4
3

(1)求曲线在点P(2,4)处的切线方程;
(2)求曲线过点P(2,4)的切线方程;
(3)求斜率为1的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数.
(1)y=x4-
5
x2

(2)y=xtanx
(3)y=(x+1)(x+2)(x+3)
(4)y=lgx-2x

查看答案和解析>>

同步练习册答案