精英家教网 > 高中数学 > 题目详情
椭圆
x2
9
+
y2
16
=1
的焦点坐标为(  )
A.(0,5)和(0,-5)B.(5,0)和(-5,0)C.(0,
7
)和(0,-
7
D.(
7
,0)和(-
7
,0)
∵椭圆的方程为
x2
9
+
y2
16
=1

∴a2=16,b2=9,
∴c2=a2-b2=7,且该椭圆焦点在y轴,
∴焦点坐标为:(0,-
7
),(0,
7
).
故选:C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知p:方程
x2
m-1
+
y2
m+3
=1
表示椭圆,q:方程x2+y2-4x+2my+m+6=0表示圆,若p真q假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,F1、F2分别为椭圆C的左、右焦点,若椭圆C的焦距为2.
(1)求椭圆C的方程;
(2)设M为椭圆上任意一点,以M为圆心,MF1为半径作圆M,当圆M与直线l:x=
a2
c
有公共点时,求△MF1F2面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若方程
x2
m-1
+
y2
3-m
=1
表示焦点在y轴上的椭圆,则实数m的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l:y=kx+2(k为常数)过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若L≥
4
5
5
,则椭圆离心率e的取值范围是(  )
A.(0,
5
5
]
B.(0,
2
5
5
]
C.(0,
3
5
5
]
D.(0,
4
5
5
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2手11•浙江)设F1,F2分别为椭圆
x2
3
+y2=1的焦点,点A,B在椭圆上,若
F1A
=5
F2B
;则点A的坐标是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,A、B、C分别为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的顶点和焦点,若∠ABC=90°,则该椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
2
+
y2
b2
=1
的焦点为F1,F2,两条准线与x轴的交点分别为M,N,若|MN|≤2|F1F2|,则该椭圆离心率取得最小值时的椭圆方程为______.

查看答案和解析>>

同步练习册答案