14£®ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ0£¬1]£¬ÇÒf£¨x£©µÄͼÏóÁ¬Ðø²»¼ä¶Ï£®Èôº¯Êýf£¨x£©Âú×㣺¶ÔÓÚ¸ø¶¨µÄm £¨m¡ÊRÇÒ0£¼m£¼1£©£¬´æÔÚx0¡Ê[0£¬1-m]£¬Ê¹µÃf£¨x0£©=f£¨x0+m£©£¬Ôò³Æf£¨x£©¾ßÓÐÐÔÖÊP£¨m£©£®
£¨1£©ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-4x+1£¬0¡Üx¡Ü\frac{1}{4}}\\{4x-1£¬\frac{1}{4}£¼x£¼\frac{3}{4}}\\{-4x+5£¬\frac{3}{4}¡Üx¡Ü1}\end{array}\right.$£¬Èôf£¨x£©¾ßÓÐÐÔÖÊP£¨m£©£¬Çóm×î´óÖµ£»
£¨2£©Èôº¯Êýf£¨x£©Âú×ãf£¨0£©=f£¨1£©£¬ÇóÖ¤£º¶ÔÈÎÒâk¡ÊN*ÇÒk¡Ý2£¬º¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{k}$£©£®

·ÖÎö £¨1£©mµÄ×î´óֵΪ$\frac{1}{2}$£®·ÖÀà½øÐÐÖ¤Ã÷£¬µ±m=$\frac{1}{2}$ʱ£¬º¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{2}$£©£»¼ÙÉè´æÔÚ$\frac{1}{2}$£¼m£¼1£¬Ê¹µÃº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨m£©£¬Ôò0£¼1-m£¼$\frac{1}{2}$£¬Ö¤Ã÷²»´æÔÚx0¡Ê£¨0£¬1-m]£¬Ê¹µÃf£¨x0£©=f£¨x0+m£©¼´¿É£»
£¨2£©ÈÎÈ¡k¡ÊN*ÇÒk¡Ý2£¬Éèg£¨x£©=f£¨x+$\frac{1}{k}$£©-f£¨x£©£¬ÆäÖÐx¡Ê[0£¬$\frac{k-1}{k}$]£¬ÀûÓõþ¼Ó·¨¿ÉµÃg£¨0£©+g£¨$\frac{1}{k}$£©+¡­+g£¨$\frac{t}{k}$£©+¡­+g£¨$\frac{k-1}{k}$£©=f£¨1£©-f£¨0£©=0£¬·ÖÀàÌÖÂÛ£ºµ±g£¨0£©¡¢g£¨$\frac{1}{k}$£©¡¢¡­¡¢g£¨$\frac{k-1}{k}$£©ÖÐÓÐÒ»¸öΪ0ʱ£¬º¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{k}$£©£»µ±g£¨0£©¡¢g£¨$\frac{1}{k}$£©¡¢¡­¡¢g£¨$\frac{k-1}{k}$£©¾ù²»Îª0ʱ£¬ÓÉÓÚÆäºÍΪ0£¬Ôò±ØÈ»´æÔÚÕýÊýºÍ¸ºÊý£¬½ø¶ø¿ÉÖ¤º¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{k}$£©£®

½â´ð ½â£º£¨1£©mµÄ×î´óֵΪ$\frac{1}{2}$£®
Ê×Ïȵ±m=$\frac{1}{2}$ʱ£¬È¡x0=$\frac{1}{2}$£¬Ôòf£¨x0£©=f£¨$\frac{1}{2}$£©=1£¬f£¨x0+m£©=f£¨$\frac{1}{2}+\frac{1}{2}$£©=f£¨1£©=1
ËùÒÔº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{2}$£©                               £¨3·Ö£©
¼ÙÉè´æÔÚ$\frac{1}{2}$£¼m£¼1£¬Ê¹µÃº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨m£©£¬Ôò0£¼1-m£¼$\frac{1}{2}$£®
µ±x0=0ʱ£¬x0+m¡Ê$£¨\frac{1}{2}£¬1£©$£¬f£¨x0£©=1£¬f£¨x0+m£©£¾1£¬f£¨x0£©¡Ùf£¨x0+m£©£»
µ±x0¡Ê£¨0£¬1-m]ʱ£¬x0+m¡Ê£¨$\frac{1}{2}$£¬1]£¬f£¨x0£©£¼1£¬f£¨x0+m£©¡Ý1£¬f£¨x0£©¡Ùf£¨x0+m£©£»
ËùÒÔ²»´æÔÚx0¡Ê£¨0£¬1-m]£¬Ê¹µÃf£¨x0£©=f£¨x0+m£©£¬
ËùÒÔ£¬mµÄ×î´óֵΪ$\frac{1}{2}$£®                                        ¡­£¨7·Ö£©
£¨2£©Ö¤Ã÷£ºÈÎÈ¡k¡ÊN*ÇÒk¡Ý2
Éèg£¨x£©=f£¨x+$\frac{1}{k}$£©-f£¨x£©£¬ÆäÖÐx¡Ê[0£¬$\frac{k-1}{k}$]£¬ÔòÓÐg£¨0£©=f£¨$\frac{1}{k}$£©-f£¨0£©
g£¨$\frac{1}{k}$£©=f£¨$\frac{2}{k}$£©-f£¨$\frac{1}{k}$£©
¡­
g£¨$\frac{t}{k}$£©=f£¨$\frac{t}{k}+\frac{1}{k}$£©-f£¨$\frac{t}{k}$£©
¡­
g£¨$\frac{k-1}{k}$£©=f£¨1£©-f£¨$\frac{k-1}{k}$£©
ÒÔÉϸ÷ʽÏà¼ÓµÃ£ºg£¨0£©+g£¨$\frac{1}{k}$£©+¡­+g£¨$\frac{t}{k}$£©+¡­+g£¨$\frac{k-1}{k}$£©=f£¨1£©-f£¨0£©=0
µ±g£¨0£©¡¢g£¨$\frac{1}{k}$£©¡¢¡­¡¢g£¨$\frac{k-1}{k}$£©ÖÐÓÐÒ»¸öΪ0ʱ£¬²»·ÁÉèΪg£¨$\frac{i}{k}$£©=0£¬i¡Ê{0£¬1£¬¡­£¬k-1}£¬
¼´g£¨$\frac{i}{k}$£©=f£¨$\frac{i}{k}$+$\frac{1}{k}$£©-f£¨$\frac{i}{k}$£©=0£¬Ôòº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{k}$£©£»
µ±g£¨0£©¡¢g£¨$\frac{1}{k}$£©¡¢¡­¡¢g£¨$\frac{k-1}{k}$£©¾ù²»Îª0ʱ£¬ÓÉÓÚÆäºÍΪ0£¬Ôò±ØÈ»´æÔÚÕýÊýºÍ¸ºÊý£¬
²»·ÁÉèg£¨$\frac{i}{k}$£©£¾0£¬g£¨$\frac{j}{k}$£©£¼0£¬ÆäÖÐi¡Ùj£¬i£¬j¡Ê{0£¬1£¬¡­£¬k-1}£¬
ÓÉÓÚg£¨x£©ÊÇÁ¬ÐøµÄ£¬ËùÒÔµ±j£¾iʱ£¬ÖÁÉÙ´æÔÚÒ»¸ö${x}_{0}¡Ê£¨\frac{i}{k}£¬\frac{j}{k}£©$£¨µ±j£¼iʱ£¬ÖÁÉÙ´æÔÚÒ»¸ö${x}_{0}¡Ê£¨\frac{i}{k}£¬\frac{j}{k}£©$£©
ʹµÃg£¨x0£©=0£¬
¼´g£¨x0£©=f£¨${x}_{0}+\frac{1}{k}$£©-f£¨x0£©=0
ËùÒÔ£¬º¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{k}$£©                     ¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éж¨Ò壬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¿Õ¼äÓÐ9¸öµã£¬ÆäÖÐÈÎÒâ4µã²»¹²Ã棬ÔÚÕâ9¸öµã¼äÁ¬½ÓÈô¸ÉÌõÏ߶Σ¬Ê¹Í¼Öв»´æÔÚËÄÃæÌ壬ÔòͼÖÐÈý½ÇÐεĸöÊý×î¶àÊÇ27£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®´ü×ÓÖÐ×°ÓдóСÏàͬµÄ6¸öСÇò£¬·Ö±ðÓÐ2¸öºìÇò¡¢4¸ö°×Çò£¬ÏÖ´ÓÖÐËæ»úÃþ³ö3¸öСÇò£¬ÔòÖÁÉÙÓÐ2¸ö°×ÇòµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{3}{4}$B£®$\frac{3}{5}$C£®$\frac{4}{5}$D£®$\frac{7}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èôº¯Êýf£¨x£©=logax£¨0£¼a£¼1£©ÔÚÇø¼ä[2£¬8]ÉϵÄ×î´óÖµÓë×îСֵ֮²îΪ2£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=$\left\{{\begin{array}{l}{{x^2}+x+1£¬x¡Ü1}\\{5x-2£¬x£¾1}\end{array}}\right.$£¬Èô·½³Ìf£¨x£©=mÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ùx1¡¢x2£¬ÇÒx1+x2£¼-1£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª£¨3£¬13£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬2£©£¬$\overrightarrow{b}$=£¨2£¬2£©£®
£¨1£©Çó£¨2$\overrightarrow{a}$-$\overrightarrow{b}$£©•£¨2$\overrightarrow{a}$+$\overrightarrow{b}$£©£»
£¨2£©Éè$\overrightarrow{c}$=£¨-3£¬¦Ë£©£¬Èô$\overrightarrow{c}$Óë$\overrightarrow{a}$¼Ð½ÇΪ¶Û½Ç£¬Çó¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+bx£¨a£¬bΪ³£Êý£¬ÇÒa¡Ù0£©Âú×ãÌõ¼þ£ºf£¨x-1£©=f£¨3-x£©£¬ÇÒ·½³Ìf£¨x£©=2xÓÐÁ½µÈ¸ù£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£®
£¨2£©Çóf£¨x£©ÔÚ[0£¬t]ÉϵÄ×î´óÖµ£®
£¨3£©ÊÇ·ñ´æÔÚʵÊým¡¢n£¨m£¼n£©£¬Ê¹f£¨x£©µÄ¶¨ÒåÓòºÍÖµÓò·Ö±ðΪ[m£¬n]ºÍ[4m£¬4n]£¬Èç¹û´æÔÚ£¬Çó³öm¡¢nµÄÖµ£¬Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êý$f£¨x£©=\sqrt{3}sinxcosx+{cos^2}x$£®
£¨¢ñ£©Çó$f£¨\frac{¦Ð}{6}£©$µÄÖµ£»
£¨¢ò£©µ±$x¡Ê[-\frac{¦Ð}{2}£¬0]$ʱ£¬Çóf£¨x£©µÄ×îСֵÒÔ¼°È¡µÃ×îСֵʱxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®°Ñ87»¯ÎªÎå½øÖÆÊýµÄÊ×λÊý×ÖÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸