·ÖÎö £¨1£©mµÄ×î´óֵΪ$\frac{1}{2}$£®·ÖÀà½øÐÐÖ¤Ã÷£¬µ±m=$\frac{1}{2}$ʱ£¬º¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{2}$£©£»¼ÙÉè´æÔÚ$\frac{1}{2}$£¼m£¼1£¬Ê¹µÃº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨m£©£¬Ôò0£¼1-m£¼$\frac{1}{2}$£¬Ö¤Ã÷²»´æÔÚx0¡Ê£¨0£¬1-m]£¬Ê¹µÃf£¨x0£©=f£¨x0+m£©¼´¿É£»
£¨2£©ÈÎÈ¡k¡ÊN*ÇÒk¡Ý2£¬Éèg£¨x£©=f£¨x+$\frac{1}{k}$£©-f£¨x£©£¬ÆäÖÐx¡Ê[0£¬$\frac{k-1}{k}$]£¬ÀûÓõþ¼Ó·¨¿ÉµÃg£¨0£©+g£¨$\frac{1}{k}$£©+¡+g£¨$\frac{t}{k}$£©+¡+g£¨$\frac{k-1}{k}$£©=f£¨1£©-f£¨0£©=0£¬·ÖÀàÌÖÂÛ£ºµ±g£¨0£©¡¢g£¨$\frac{1}{k}$£©¡¢¡¡¢g£¨$\frac{k-1}{k}$£©ÖÐÓÐÒ»¸öΪ0ʱ£¬º¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{k}$£©£»µ±g£¨0£©¡¢g£¨$\frac{1}{k}$£©¡¢¡¡¢g£¨$\frac{k-1}{k}$£©¾ù²»Îª0ʱ£¬ÓÉÓÚÆäºÍΪ0£¬Ôò±ØÈ»´æÔÚÕýÊýºÍ¸ºÊý£¬½ø¶ø¿ÉÖ¤º¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{k}$£©£®
½â´ð ½â£º£¨1£©mµÄ×î´óֵΪ$\frac{1}{2}$£®
Ê×Ïȵ±m=$\frac{1}{2}$ʱ£¬È¡x0=$\frac{1}{2}$£¬Ôòf£¨x0£©=f£¨$\frac{1}{2}$£©=1£¬f£¨x0+m£©=f£¨$\frac{1}{2}+\frac{1}{2}$£©=f£¨1£©=1
ËùÒÔº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{2}$£© £¨3·Ö£©
¼ÙÉè´æÔÚ$\frac{1}{2}$£¼m£¼1£¬Ê¹µÃº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨m£©£¬Ôò0£¼1-m£¼$\frac{1}{2}$£®
µ±x0=0ʱ£¬x0+m¡Ê$£¨\frac{1}{2}£¬1£©$£¬f£¨x0£©=1£¬f£¨x0+m£©£¾1£¬f£¨x0£©¡Ùf£¨x0+m£©£»
µ±x0¡Ê£¨0£¬1-m]ʱ£¬x0+m¡Ê£¨$\frac{1}{2}$£¬1]£¬f£¨x0£©£¼1£¬f£¨x0+m£©¡Ý1£¬f£¨x0£©¡Ùf£¨x0+m£©£»
ËùÒÔ²»´æÔÚx0¡Ê£¨0£¬1-m]£¬Ê¹µÃf£¨x0£©=f£¨x0+m£©£¬
ËùÒÔ£¬mµÄ×î´óֵΪ$\frac{1}{2}$£® ¡£¨7·Ö£©
£¨2£©Ö¤Ã÷£ºÈÎÈ¡k¡ÊN*ÇÒk¡Ý2
Éèg£¨x£©=f£¨x+$\frac{1}{k}$£©-f£¨x£©£¬ÆäÖÐx¡Ê[0£¬$\frac{k-1}{k}$]£¬ÔòÓÐg£¨0£©=f£¨$\frac{1}{k}$£©-f£¨0£©
g£¨$\frac{1}{k}$£©=f£¨$\frac{2}{k}$£©-f£¨$\frac{1}{k}$£©
¡
g£¨$\frac{t}{k}$£©=f£¨$\frac{t}{k}+\frac{1}{k}$£©-f£¨$\frac{t}{k}$£©
¡
g£¨$\frac{k-1}{k}$£©=f£¨1£©-f£¨$\frac{k-1}{k}$£©
ÒÔÉϸ÷ʽÏà¼ÓµÃ£ºg£¨0£©+g£¨$\frac{1}{k}$£©+¡+g£¨$\frac{t}{k}$£©+¡+g£¨$\frac{k-1}{k}$£©=f£¨1£©-f£¨0£©=0
µ±g£¨0£©¡¢g£¨$\frac{1}{k}$£©¡¢¡¡¢g£¨$\frac{k-1}{k}$£©ÖÐÓÐÒ»¸öΪ0ʱ£¬²»·ÁÉèΪg£¨$\frac{i}{k}$£©=0£¬i¡Ê{0£¬1£¬¡£¬k-1}£¬
¼´g£¨$\frac{i}{k}$£©=f£¨$\frac{i}{k}$+$\frac{1}{k}$£©-f£¨$\frac{i}{k}$£©=0£¬Ôòº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{k}$£©£»
µ±g£¨0£©¡¢g£¨$\frac{1}{k}$£©¡¢¡¡¢g£¨$\frac{k-1}{k}$£©¾ù²»Îª0ʱ£¬ÓÉÓÚÆäºÍΪ0£¬Ôò±ØÈ»´æÔÚÕýÊýºÍ¸ºÊý£¬
²»·ÁÉèg£¨$\frac{i}{k}$£©£¾0£¬g£¨$\frac{j}{k}$£©£¼0£¬ÆäÖÐi¡Ùj£¬i£¬j¡Ê{0£¬1£¬¡£¬k-1}£¬
ÓÉÓÚg£¨x£©ÊÇÁ¬ÐøµÄ£¬ËùÒÔµ±j£¾iʱ£¬ÖÁÉÙ´æÔÚÒ»¸ö${x}_{0}¡Ê£¨\frac{i}{k}£¬\frac{j}{k}£©$£¨µ±j£¼iʱ£¬ÖÁÉÙ´æÔÚÒ»¸ö${x}_{0}¡Ê£¨\frac{i}{k}£¬\frac{j}{k}£©$£©
ʹµÃg£¨x0£©=0£¬
¼´g£¨x0£©=f£¨${x}_{0}+\frac{1}{k}$£©-f£¨x0£©=0
ËùÒÔ£¬º¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨$\frac{1}{k}$£© ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éж¨Ò壬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶȽϴó£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{3}{4}$ | B£® | $\frac{3}{5}$ | C£® | $\frac{4}{5}$ | D£® | $\frac{7}{10}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com