精英家教网 > 高中数学 > 题目详情
19.若0<α<$\frac{π}{2}$,cos($\frac{π}{3}$+α)=$\frac{1}{3}$,则cosα=$\frac{2\sqrt{6}+1}{6}$.

分析 由条件利用同角三角函数的基本关系求得sin(($\frac{π}{3}$+α)的值,再利用两角差的余弦公式,求得cosα=cos[($\frac{π}{3}$+α)-$\frac{π}{3}$]的值.

解答 解:∵0<α<$\frac{π}{2}$,cos($\frac{π}{3}$+α)=$\frac{1}{3}$,∴$\frac{π}{3}$+α仍然是锐角,
∴sin(($\frac{π}{3}$+α)=$\sqrt{{1-cos}^{2}(\frac{π}{3}+α)}$=$\frac{2\sqrt{2}}{3}$,
则cosα=cos[($\frac{π}{3}$+α)-$\frac{π}{3}$]=cos($\frac{π}{3}$+α)cos$\frac{π}{3}$+sin($\frac{π}{3}$+α)sin$\frac{π}{3}$
=$\frac{1}{3}•\frac{1}{2}$+$\frac{2\sqrt{2}}{3}•\frac{\sqrt{3}}{2}$=$\frac{2\sqrt{6}+1}{6}$,
故答案为:$\frac{2\sqrt{6}+1}{6}$.

点评 本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.数列{an}的前n项和为Sn,且满足:若Sn=$\frac{3}{2}$-$\frac{1}{2}$an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的各项为正,且满足bn≤$\frac{{a}_{n}{b}_{n-1}}{{a}_{n}+{b}_{n-1}}$,b1=1,求证:bn≤1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=lg(x2-2x-3)的单调递减区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.关于回归分析,下列说法错误的是(  )
A.在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定
B.线性相关系数可以是正的也可以是负的
C.在回归分析中,如果r2=1或r=±1,说明x与y之间完全线性相关
D.样本相关系数r∈(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.有下列五个命题:
①函数y=4cos2x,x∈[-10π,10π]不是周期函数;
②已知定义域为R的奇函数f(x),满足f(x+3)=f(x),当x∈(0,$\frac{3}{2}$)时,f(x)=sinπx,则函数f(x)在区间[0,6]上的零点个数是9;
③为了得到函数y=-cos2x的图象,可以将函数y=sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{6}$;
④已知函数f(x)=x-sinx,若x1,x2∈[-$\frac{π}{2}$,$\frac{π}{2}}$]且f(x1)+f(x2)>0,则x1+x2>0;
⑤设曲线f(x)=acosx+bsinx的一条对称轴为x=$\frac{π}{5}$,则点($\frac{2π}{5}$,0)为曲线y=f($\frac{π}{10}$-x)的一个对称中心.
其中正确命题的序号是①②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,则不等式f(x)<5的解集是(-5,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AA1=2,AC=$\sqrt{2}$,过BC的中点D作平面ACB1的垂线,交平面ACC1A1于E,则BE与平面ABB1A1所成角的正切值为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{10}$C.$\frac{{\sqrt{10}}}{10}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知命题p:“?x∈R,有x2-mx-m≤0”则¬p:?x∈R,x2-mx-m>0. 若命题p是假命题,则实数m的取值范围是-4<m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=3x+2x-4,函数g(x)=log2x+2x2-5,若实数m,n分别是函数f(x),g(x)的零点,则(  )
A.g(m)<0<f(n)B.f(n)<0<g(m)C.0<g(m)<f(n)D.f(n)<g(m)<0

查看答案和解析>>

同步练习册答案