精英家教网 > 高中数学 > 题目详情
15.已知命题p:“?x∈R,有x2-mx-m≤0”则¬p:?x∈R,x2-mx-m>0. 若命题p是假命题,则实数m的取值范围是-4<m<0.

分析 根据特称命题的否定是全称命题进行求解,若命题p是假命题,得¬p为真命题,结合一元二次不等式恒成立进行求解即可.

解答 解:特称命题的否定是全称命题,则¬p:?x∈R,x2-mx-m>0,
若命题p是假命题,则¬p:?x∈R,x2-mx-m>0为真命题,
则判别式△=m2+4m<0,得-4<m<0,
故答案为:?x∈R,x2-mx-m>0,-4<m<0

点评 本题主要考查含有量词的命题的否定以及命题真假的判断,根据条件转化为一元二次不等式恒成立是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知i是虚数单位,复数z=$\frac{1}{a-i}$(a∈R)在复平面内对应的点位于直线x-2y=0上,则复数z的虚部为(  )
A.2B.3C.$\frac{1}{5}$iD.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若0<α<$\frac{π}{2}$,cos($\frac{π}{3}$+α)=$\frac{1}{3}$,则cosα=$\frac{2\sqrt{6}+1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.曲线C是由方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(y≥0)的弧线及方程为y=$\frac{1}{4}({x}^{2}-{a}^{2})$(y<0)的弧线构成的封闭曲线,若点F1(-c,0),F2(-c,0),F(0,-3)为等边三角形的三个顶点(其中c=$\sqrt{{a}^{2}-{b}^{2}}$),椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{\sqrt{3}}{4}$.
(Ⅰ)求曲线C的方程;
(Ⅱ)是否存在过原点的直线l与曲线C交于不在x轴上的A,B两点,使得$\overrightarrow{{F}_{1}A}=\overrightarrow{B{F}_{2}}$,若存在,求出该直线的斜率,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$sinα=\frac{5}{13},cos(α+β)=\frac{3}{5}$,(α、β为锐角),求cosβ,cos(2α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)的定义域为D,若存在非零实数m,使得对于任意x∈M(M⊆D),有(x-m)∈D且f(x-m)≤f(x),则称f(x)为M上的m度低调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的5度低调函数,那么实数a的取值范围为-$\frac{\sqrt{5}}{2}$≤a≤$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆x2+y2=4与圆x2+y2-4x+4y-12=0的公共弦所在直线和两坐标轴所围成的面积为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{xlnx}{x-1}-a(a<0)$.
(Ⅰ)当x∈(0,1)时,求f(x)的单调性;
(Ⅱ)若h(x)=(x2-x)•f(x),且方程h(x)=m有两个不相等的实数根x1,x2.求证:x1+x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=e-2x-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线垂直于直线x+2y-1=0,则a的值为-4.

查看答案和解析>>

同步练习册答案