精英家教网 > 高中数学 > 题目详情
15.用分析法证明:$\sqrt{8}$+$\sqrt{7}$>$\sqrt{5}$+$\sqrt{10}$.

分析 分析使不等式$\sqrt{8}+\sqrt{7}>\sqrt{5}+\sqrt{10}$成立的充分条件,一直分析到使不等式成立的充分条件显然具备,从而不等式得证.

解答 证明:要证$\sqrt{8}+\sqrt{7}>\sqrt{5}+\sqrt{10}$,即证${(\sqrt{8}+\sqrt{7})^2}>{(\sqrt{5}+\sqrt{10})^2}$,
即证$15+4\sqrt{14}>15+10\sqrt{2}$,即证$2\sqrt{14}>5\sqrt{2}$,即证56>50,
上式显然成立,所以$\sqrt{8}+\sqrt{7}>\sqrt{5}+\sqrt{10}$.

点评 本题考查用分析法证明不等式,关键是寻找使不等式成立的充分条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知数列{an}和前n项和为Sn,且Sn=n2+3n+1,则an=$\left\{\begin{array}{l}{5,n=1}\\{2n+2,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.两直线3x-2y-1=0与3x-2y+1=0平行,则它们之间的距离为(  )
A.4B.$\frac{2}{13}\sqrt{13}$C.$\frac{5}{26}\sqrt{13}$D.$\frac{7}{20}\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在某科普杂志的一篇文章中,每个句子的字数如下:
10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17
在某报纸的一篇文章中,每个句子的字数如下:
27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)不计算仅从茎叶图中两组数据的分布情况对数据进行比较,得到什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知菱形的一个内角是60°,边长为a,沿菱形较短的对角线折成大小为60°的二面角,则菱形中含60°角的两个顶点间的距离为$\frac{\sqrt{3}}{2}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解析:解关于x的不等式:ax2-(a-1)x-1<0(a<0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,$\overrightarrow a$⊥$\overrightarrow b$,则|$\overrightarrow a$-2$\overrightarrow b$|=$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,其中a∈R,若曲线y=f(x)在点(1,f(1))处的切线垂直于直线x-3y=0,则切线方程为3x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α∈(0,π),sinα+cosα=$\frac{{\sqrt{3}}}{3}$,则cos2α=(  )
A.±$\frac{{\sqrt{5}}}{3}$B.$\frac{{\sqrt{5}}}{3}$C.-$\frac{{\sqrt{5}}}{3}$D.±$\frac{{\sqrt{5}}}{9}$

查看答案和解析>>

同步练习册答案