精英家教网 > 高中数学 > 题目详情
8.已知三棱柱ABC-A1B1C1的侧棱和底面垂直,底面是正三角形,侧棱长是底边长的2倍,若该三棱柱的各顶点都在球O的表面上,且球O的表面积为36π,则此三棱锥A-A1B1C1的体积为(  )
A.$\frac{121}{25}$B.$\frac{81}{16}$C.$\frac{16}{9}$D.$\frac{9}{4}$

分析 通过球的内接体,说明几何体的中心是球的直径,由球的表面积求出球的半径,设出三棱柱的底面边长,通过解直角三角形求得a,然后由棱柱的体积公式得答案.

解答 解:如图,
∵三棱柱ABC-A1B1C1的所有棱长都相等,6个顶点都在球O的球面上,
∴三棱柱为正三棱柱,且其中心为球的球心,设为O,
再设球的半径为r,由球O的表面积为36π,得4πr2=36π,∴r=3.
设三棱柱的底面边长为a,则上底面所在圆的半径为$\frac{\sqrt{3}}{3}$a,且球心O到上底面中心H的距离OH=a,
∴32=a2+($\frac{\sqrt{3}}{3}$a)2,∴a=$\frac{3\sqrt{3}}{2}$.
则三棱柱的底面积为S=$\frac{\sqrt{3}}{4}×(\frac{3\sqrt{3}}{2})^{2}$=$\frac{27\sqrt{3}}{16}$.
∴三棱锥A-A1B1C1的体积为$\frac{1}{3}$×$\frac{27\sqrt{3}}{16}$×2×$\frac{3\sqrt{3}}{2}$=$\frac{81}{16}$.
故选:B.

点评 本题考查球的内接体与球的关系,球的半径的求解,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知P:方程X2+mX+m+3=0有一正一负两根,q:不等式mX2+2X+1>0恒成立,如果p或q为真,p且q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\left\{\begin{array}{l}\frac{1}{2^x},x≤0\\ 2sin(2x+\frac{π}{6}),0<x<π\end{array}$若x1,x2,x3是方程f(x)+a=0三个不同的根,则x1+x2+x3的范围是(  )
A.$(-1,\frac{π}{2})$B.$(\frac{π}{3}-1,\frac{π}{3})$C.$(\frac{π}{3}-1,\frac{π}{3}+1)$D.$(\frac{π}{6},\frac{π}{6}+1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a=log0.50.2,b=log20.2,c=20.2,则a,b,c的大小关系是(  )
A.a<b<cB.b<c<aC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,g(x)=f(x)-a
(1)当a=2时,求函数g(x)的零点;
(2)若函数g(x)有四个零点,求a的取值范围;
(3)在(2)的条件下,记g(x)得四个零点分别为x1,x2,x3,x4,求x1+x2+x3+x4的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,∠BAC=90°,AB=AC=AA1=2,且E是BC的中点,D是AC1中点.
(1)求证:B1C⊥平面AEC1
(2)求三棱锥C-AED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC正三角形,PA⊥平面ABC,且PA=AB=a.
(1)若M为AC的中点,求证BM⊥平面PAC.
(2)求二面角A-PC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=cos(πx+$\frac{π}{6}$)的一个单调增区间是(  )
A.[-$\frac{2}{3}$,$\frac{1}{3}$]B.[$\frac{1}{3}$,$\frac{4}{3}$]C.[-$\frac{1}{6}$,$\frac{5}{6}$]D.[$\frac{5}{6}$,$\frac{11}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.$\overrightarrow{a}$+$\overrightarrow{b}$=(2,-8),$\overrightarrow{a}$$-\overrightarrow{b}$=(-8,16),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则$\overrightarrow{a}$=(-3,4),$\overrightarrow{b}$=(5,-12),$\overrightarrow{a}$•$\overrightarrow{b}$=-63,cosθ=-$\frac{63}{65}$.

查看答案和解析>>

同步练习册答案