精英家教网 > 高中数学 > 题目详情
做一个圆柱形锅炉容积为v,两个底面的材料的造价为20元/m2,侧面的材料造价为15元/m2,问锅炉的底面直径与高的比为多少时造价最低?
考点:函数模型的选择与应用
专题:应用题,函数的性质及应用,导数的综合应用
分析:由题意,设设底面半径为r,造价为y元;则侧面的高为
v
πr2
;故y=20×2×πr2+15×2×π×r×
v
πr2
,利用导数求最值点,从而求比值.
解答: 解:设底面半径为r,造价为y元;
则侧面的高为
v
πr2

故y=20×2×πr2+15×2×π×r×
v
πr2

=40πr2+30
v
r

y′=80πr-
30v
r2
=
80πr3-30v
r2
=0,
则当r3=
3v
时,造价最低;
此时,2r:
v
πr2
=2πr3:v
=2π×
3v
:v
=3:4.
点评:本题考查了函数在实际问题中的应用,同时考查了导数的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线M:y2=x与曲线N:(x-4)2+2y2=m2(m>0)相交于四点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD的顶点P在底面ABCD中的投影恰好是A,其三视图如图所示,则四棱锥P-ABCD的表面积为(  )
A、(2
2
+1)a2
B、2a2
C、(1+
2
)a2
D、(2+
2
)a2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1-x
ax
+lnx(a≠0).
(1)求函数y=f(x)的递增区间;
(2)当a=1时,求函数y=f(x)在[
1
4
,4]上的最大值和最小值;
(3)求证:ln2<
1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n
<ln3.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥V-ABCD的底面为矩形,侧面VAB⊥底面ABCD,又VB⊥平面VAD,求证:平面VBC⊥平面VAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cosxsinx(x-
π
3
)+
3
sin2x+sinxcosx.
(1)求函数y=f(x)图象的对称中心;
(2)若2f(x)-m+1=0在[
π
6
12
]有两个相异的实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

BC
AB
|AB|
+
AC
|AC|
互相垂直,则△ABC形状为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=2x2-4x+p与直线y=1相切,则p的值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,(Sn-1)an-1=Sn-1an-1-an(n≥2).
(1)求数列{an}的通项公式;
(2)设bn=an2,数列{bn}的前n项和为Tn,试比较Tn与2-
1
n
的大小;
(3)若
n
k=1
1
1
an
+k
>-
3
2
+loga(2a-1)(其中a>0且a≠1)对任意正整数n都成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案