精英家教网 > 高中数学 > 题目详情
5.数列{an}的通项公式为an=13-2n,则其前n项和Sn达到最大值时,n=6.

分析 由an=13-2n≥0,得n≤6.5,由此能求出前n项和Sn达到最大值时n的值.

解答 解:∵数列{an}的通项公式为an=13-2n,
由an=13-2n≥0,得n≤6.5,
a6=13-12=1,a7=13-14=-1,
∴前n项和Sn达到最大值时,n=6.
故答案为:6.

点评 本题考查等差数列的前n项和的最大值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知{an}为等比数列,且an>0,a2a4+2a3a5+a4a6=9,那么a3+a5=(  )
A.3B.9C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列说法中正确的是①②③
①设随机变量X服从二项分布B(6,$\frac{1}{2}$),则P(X=3)=$\frac{5}{16}$
②已知随机变量X服从正态分布N(2,σ2)  且P(X<4)=0.9,则P(0<X<2)=0.4
③${∫}_{-1}^{0}$$\sqrt{1-{x}^{2}}$dx=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{4}$
④E(2X+3)=2E(X)+3,D(2X+3)=2D(X)+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足an+1=$\left\{\begin{array}{l}2{a_n},0<{a_n}≤\frac{1}{2}\\ 2{a_n}-1,\frac{1}{2}<{a_n}<1\end{array}$且a1=$\frac{3}{5}$,则a2016=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an},{bn},{cn},满足a1=8,b1=10,c1=6,且an+1=an,bn+1=$\frac{{c}_{n}+{a}_{n}}{2}$,cn+1=$\frac{{b}_{n}+{a}_{n}}{2}$,则bn=2×(-$\frac{1}{2}$)n-1+8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若定义在(0,+∞)上的函数f(x)=2x+$\frac{a}{x}$在x=3时取得最小值,则a=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:
测试指标[70,76)[76,82)[82,88)[88,94)[94,100)
元件甲81240328
元件乙71840296
(Ⅰ)试分别估计元件甲,乙为正品的概率;
(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和为Sn,对一切n∈N*,点(n,$\frac{{S}_{n}}{n}$)都在函数f(x)=x+$\frac{{a}_{n}}{2x}$ 的图象上.
(1)求a1,a2,a3的值,猜想an的表达式;
(2)并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a>-38,P=$\sqrt{a+40}$-$\sqrt{a+41}$,Q=$\sqrt{a+38}$-$\sqrt{a+39}$,则P与Q的大小关系为P>Q.

查看答案和解析>>

同步练习册答案