精英家教网 > 高中数学 > 题目详情
已知A盒中有2个红球和2个黑球;B盒中有2个红球和3个黑球,现从A盒与B盒中各取一个球出来再放入对方盒中.
(1)求A盒中有2个红球的概率;
(2)求A盒中红球数ξ的分布列及数学期望.
考点:离散型随机变量的期望与方差,离散型随机变量及其分布列
专题:概率与统计
分析:(1)A盒与B盒中各取一个球出来再放入对方盒中后,A盒中还有2个红球有下面两种情况:①互换的是红球,②互换的是黑球,由此能求出A盒中有2个红球的概率.
(2)A盒中红球数ξ的所有可能取值为1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.
解答: 解:(1)A盒与B盒中各取一个球出来再放入对方盒中后,
A盒中还有2个红球有下面两种情况:
①互换的是红球,将该事件记为A1
则:P(A1)═
C
1
2
•C
1
2
C
1
4
•C
1
5
=
1
5

②互换的是黑球,将该事件记为A2
则:P(A2)═
C
1
2
•C
1
2
C
1
4
•C
1
5
=
3
10

∴A盒中有2个红球的概率p=
1
5
+
3
10
=
1
2

(2)A盒中红球数ξ的所有可能取值为1,2,3,
P(ξ=1)=
C
1
2
•C
1
3
C
1
4
•C
1
5
=
3
10

P(ξ=2)=
1
2

P(ξ=3)=
C
1
2
•C
1
2
C
1
4
•C
1
5
=
1
5

∴ξ的分布列为:
ξ  1 2  3
P  
3
10
 
1
2
 
1
5
∴Eξ=
3
10
×1+
1
2
×2+
1
5
×3=
19
10
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别F1、F2焦距为2,且与双曲线
x2
2
-y2=1共顶点.P为椭圆C上一点,直线PF1交椭圆C于另一点Q.
(1)求椭圆C的方程;
(2)若点P的坐标为(0,b),求过P、Q、F2三点的圆的方程;
(3)若
F1P
QF1
,且λ∈[
1
2
,2],求
OP
OQ
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x-2,数列{an}的前n项和为Sn,且点(an,2Sn)在函数y=f(x)的图象上;
(1)求数列{an}的通项公式;
(2)设bn=f(an),数列{bn}的前n项和为Tn,若 
T2n+4n
Tn+2n
<an+1+t对任意的n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,d为常数,已知对?n,m∈N*,当n>m,总有Sn-Sm=Sn-m+m(n-m)d成立
(1)求证:数列{an}是等差数列;
(2)若正整数n,m,k成等差数列,比较Sn+Sk与2Sm的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N*,当n>m时,总有Sn-Sm=Sn-m+m(n-m)d”是命题q:“数列{an}是等差数列”的充要条件吗?请证明你的结论;由此类比,请你写出数列{bn}是等比数列(公比为q,且q≠0)的充要条件(无需证明)?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)令ω=
1
2
,求函数F(x)=f(x)+f(x+π)的单调区间;
(2)令ω=2,将函数y=f(x)的图象向左平移
π
6
个单位,再往上平移1个单位,得到函数y=g(x)的图象.对任意的a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-(a+2)x+lnx(a>0).
(1)若a=1,求函数f(x)的极值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=
2

(1)若
a
b
,求
a
b

(2)若
a
b
的夹角为135°,求|
a
+
b
|;
(3)若
a
-
b
a
垂直,求
a
b
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x3+
1
2
x2-2x
,求f(x)的单调区间和极值.

查看答案和解析>>

同步练习册答案