精英家教网 > 高中数学 > 题目详情
17.直线xsinθ+ycosθ-c=0的一个法向量(直线的法向量是指和直线的方向向量相垂直的非零向量)为$\overrightarrow{n}$=(2,1),则tanθ=2.

分析 先根据直线的法向量,求出直线的一个方向向量,由此求出直线的斜率,即可得出结论.

解答 解:∵直线l的一个法向量为$\overrightarrow{n}$=(2,1),
∴直线l的一个方向向量为(1,-2),
∴k=-2,
∴-$\frac{sinθ}{cosθ}$=-2,
∴tanθ=2,
故答案为:2.

点评 本题考查直线的倾斜角与斜率的关系,直线的法向量和方向向量的定义,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.计算:($\frac{i}{1+i}$)2+($\frac{i}{1-i}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-2≤0\\ x-y≥0\\ x≥0,y≥0\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为2,则$\frac{1}{a}+\frac{1}{b}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知e为自然对数的底数,则曲线y=2ex在点(1,2e)处的切线斜率为2e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=2.5处的切线的斜率为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.浑南“万达广场”五一期间举办“万达杯”游戏大赛.每5人组成一队,编号为1,2,3,4,5,在其中的投掷飞镖比赛中,要求随机抽取3名队员参加,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面为圆形,ABCD为正方形).每队至少有2人“成功”则可获得奖品(其中任何两位队员“成功”与否互不影响).
(Ⅰ)某队中有3男2女,求事件A:“参加投掷飞镖比赛的3人中有男有女”的概率;
(Ⅱ)求某队可获得奖品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知在直三棱柱ABC-A1B1C1中,AB=AA1=2,∠ACB=$\frac{π}{3}$,点D是线段BC的中点.
(Ⅰ)求证:A1C∥平面AB1D;
(Ⅱ)当三棱柱ABC-A1B1C1的体积最大时,求直线A1D与平面AB1D所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式cosx≥-$\frac{1}{2}$的解为[2kπ-$\frac{2π}{3}$,2kπ+$\frac{2π}{3}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在等差数列{an}中,a1=-60,a17=-12,求数列{an}前n项和.

查看答案和解析>>

同步练习册答案