精英家教网 > 高中数学 > 题目详情
9.已知命题p:函数f(x)=$\frac{x}{x-1}$的图象的对称中心坐标为(1,1);命题q:若函数g(x)在区间[a,b]上是增函数,且g(x)>0,则有g(a)(b-a)<${∫}_{a}^{b}$g(x)dx<g(b)(b-a)成立.下列命题为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

分析 变形即可判断命题p的真假,利用定积分的性质即可判断出q的真假,根据复合命题真假关系进行的判断.

解答 解:f(x)=$\frac{x}{x-1}$=$\frac{x-1+1}{x-1}$=1+$\frac{1}{x-1}$,则函数f(x)的图象的对称中心坐标为(1,1);故p是真命题,
若函数g(x)在区间[a,b]上是增函数,若a<x<b,则g(a)<g(x)<g(b),
则有积分的应用可知定义面积满足,
S矩形ABCD<S曲边ABFD<S矩形ABFE
∴g(a)(b-a)<${∫}_{a}^{b}$g(x)dx<g(b)(b-a),因此成立,即是真命题.
则p∧q是真命题.
故选:A

点评 本题主要考查命题的真假判断,根据分式函数的性质以及积分的应用判断命题p,q的真假是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了n名电视观众,如图是观众年龄的频率分布直方图,已知年龄在[30,35)的人数为10人.
(Ⅰ)完成下列2×2列联表:
文艺节目新闻节目总计
大于或等于20岁至小于40岁40         
大于或等于40岁   30
总计
并据此资料检验,在犯错误的概率不超过0.001的前提下,能否认为收看文艺节目的观众与年龄有关?
(Ⅱ)根据用分层抽样方法在收看文艺节目的观众中随机抽取6名进一步了解观看节目情况,最后在这6名观众中随机抽出3人获奖,记这获奖3人中年龄大于或等于40岁的人数为ξ,求ξ的分布列与数学期望.
参考公式与临界值表:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.我们可以将1拆分如下:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,以此类推,可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{20}$+$\frac{1}{n}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中m,n∈N*,且m<n,则函数y=$\frac{(m+n)x}{x-1}$的值域为{y|y≠43}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=sinωx,(ω>0)的部分图象如图所示,且($\overrightarrow{OP}$+$\overrightarrow{OQ}$)•$\overrightarrow{OM}$=2,则ω的值是π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正三棱锥P-ABC中,E,F分别是AC,PC的中点,若EF⊥BF,AB=2,则下列说法中正确的个数为(  )
①EF⊥PC
②PA与BE所成角的正切值为$\sqrt{5}$
③正三棱锥P-ABC的外接球表面积为6π
④正三棱锥P-ABC的内切球表面积为$\frac{8π}{9}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在平面直角坐标系xOy中,已知R(x0,y0)是椭圆$\frac{{y}^{2}}{36}$+$\frac{{x}^{2}}{18}$=1上的一点,从原点O向圆R(x-x02+(y-y02=12作两条切线,分别交椭圆于P,Q两点.
(1)若R点在第一象限,且直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,分别记为k1,k2,求k1•k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合A,B的并集A∪B={a1,a2,a3,a4},当A≠B时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数为(  )
A.12B.24C.64D.81

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在区间[1,2]上随机取一个数r,则使得圆x2+y2=r2与直线x+y+2=0存在公共点的概率为2-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U=R,A={x|-x2+1<0},B={x|lnx<0},则(∁UA)∩B=(  )
A.B.A={x|x≤1}C.{x|x<1}D.{x|0<x<1}

查看答案和解析>>

同步练习册答案