精英家教网 > 高中数学 > 题目详情
20.我们可以将1拆分如下:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,以此类推,可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{20}$+$\frac{1}{n}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中m,n∈N*,且m<n,则函数y=$\frac{(m+n)x}{x-1}$的值域为{y|y≠43}.

分析 根据已知求出m,n的值,进而得到函数的解析式,利用分离常数法,可得函数的值域.

解答 解:由已知中:
1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,
1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,
1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,
若1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{20}$+$\frac{1}{n}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中m,n∈N*,且m<n,
∵2=1×2,
6=2×3,
30=5×6,
42=6×7,
56=7×8,
72=8×9,
90=9×10,
110=10×11,
132=11×12,
∴1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{20}$+$\frac{1}{n}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$=(1-$\frac{1}{4}$)+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{20}$+($\frac{1}{6}$-$\frac{1}{12}$)+$\frac{1}{156}$,
$\frac{1}{m}$+$\frac{1}{n}$=$\frac{m+n}{mn}$=$\frac{43}{390}$,
∴m=13,n=30,
∴函数y=$\frac{(m+n)x}{x-1}$=$\frac{43x}{x-1}$=$\frac{43(x-1)+43}{x-1}$=43+$\frac{43}{x-1}$≠43,
故函数的值域为:{y|y≠43},
故答案为:{y|y≠43}

点评 本题考查的知识点是归纳推理,函数的值域,其中根据已知求出m,n值是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.从一批产品中取出三件产品,设A表示事件“三件产品全不是次品”,B表示事件“三件产品全是次品”,C表示事件“三件产品至少有一件是次品”,则下列结论正确的是(  )
A.事件A与C互斥B.任何两个事件均互斥
C.事件B与C互斥D.任何两个事件均不互斥

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图是一个几何体的三视图,则这个几何体的体积为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.
(Ⅰ)求证:平面PBC⊥平面PCD;
(Ⅱ)设点N是线段CD上一动点,且$\overrightarrow{DN}$=λ$\overrightarrow{DC}$,当直线MN与平面PAB所成的角最大时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,曲线C上的点S(x,y)到点M(1,0)的距离与它到直线x=4的距离之比为$\frac{1}{2}$.
(1)求曲线C的方程;
(2)若点A(x1,y1)与点P(x2,y2)在曲线C上,x12+x22=4且点A在第一象限,点P在第二象限,点B与点A关于原点对称,求三角形△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在区间[-1,1]内随机取两个实数x,y,则满足y≥x2-1的概率是$\frac{5}{6}$ .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z1=1+i,z2=m-i,若z1•z2为纯虚数,则实数m可以是(  )
A.iB.i2C.i3D.i4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:函数f(x)=$\frac{x}{x-1}$的图象的对称中心坐标为(1,1);命题q:若函数g(x)在区间[a,b]上是增函数,且g(x)>0,则有g(a)(b-a)<${∫}_{a}^{b}$g(x)dx<g(b)(b-a)成立.下列命题为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等比数列{an}中,a5a10+a7a8=2×106,则lga1+lga2+…+lga14=(  )
A.42B.45C.36D.32

查看答案和解析>>

同步练习册答案