14£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªR£¨x0£¬y0£©ÊÇÍÖÔ²$\frac{{y}^{2}}{36}$+$\frac{{x}^{2}}{18}$=1ÉϵÄÒ»µã£¬´ÓÔ­µãOÏòÔ²R£¨x-x0£©2+£¨y-y0£©2=12×÷Á½ÌõÇÐÏߣ¬·Ö±ð½»ÍÖÔ²ÓÚP£¬QÁ½µã£®
£¨1£©ÈôRµãÔÚµÚÒ»ÏóÏÞ£¬ÇÒÖ±ÏßOP£¬OQ»¥Ïà´¹Ö±£¬ÇóÔ²RµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßOP£¬OQµÄбÂÊ´æÔÚ£¬·Ö±ð¼ÇΪk1£¬k2£¬Çók1•k2µÄÖµ£®

·ÖÎö £¨1£©ÀûÓÃÇÐÏßµÄÐÔÖÊ¿ÉÇó³ö|OR|=2$\sqrt{6}$£¬ÓÖRÔÚÍÖÔ²ÉÏ£®Áз½³Ì×é½â³öRµã×ø±ê£»
£¨2£©¸ù¾ÝRµ½OP£¬OQµÄ¾àÀëΪ2$\sqrt{3}$µÃ³ök1£¬k2Ϊij¸öÒ»Ôª¶þ´Î·½³ÌµÄ½â£¬¸ù¾Ý¾àÀ빫ʽµÃ³öÕâ¸öÒ»Ôª¶þ´Î·½³Ì£¬½áºÏRΪÍÖÔ²ÉϵĵãµÃ³ök1•k2µÄÖµ£®

½â´ð ½â£º£¨1£©Ô²RµÄ°ë¾¶r=2$\sqrt{3}$£¬
¡ßOP¡ÍOQ£¬¡à|OR|=$\sqrt{2}$r=2$\sqrt{6}$£¬¡àx02+y02=24£¬
ÓÖµãRÔÚÍÖÔ²CÉÏ£¬¡à$\frac{{{y_0}^2}}{36}+\frac{{{x_0}^2}}{18}=1$£¬
ÁªÁ¢$\left\{\begin{array}{l}{{{x}_{0}}^{2}+{{y}_{0}}^{2}=24}\\{\frac{{{y}_{0}}^{2}}{36}+\frac{{{x}_{0}}^{2}}{18}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{x}_{0}=2\sqrt{3}}\\{{y}_{0}=2\sqrt{3}}\end{array}\right.$£®
¡àÔ²RµÄ·½³ÌΪ £¨x-2$\sqrt{3}$£©2+£¨y-2$\sqrt{3}$£©2=12£®
£¨2£©Ö±ÏßOP·½³ÌΪ£ºk1x-y=0£¬Ö±ÏßOQµÄ·½³ÌΪ£ºk2x-y=0£®
¡ßOP£¬OQΪԲRµÄÇÐÏߣ¬
¡à$\frac{|{k}_{1}{x}_{0}-{y}_{0}|}{\sqrt{1+{{k}_{1}}^{2}}}$=2$\sqrt{3}$£¬$\frac{|{k}_{2}{x}_{0}-{y}_{0}|}{\sqrt{1+{{k}_{2}}^{2}}}=2\sqrt{3}$£®
¡àk1£¬k2Ϊ·½³Ì${£¨12-{x_0}£©^2}{k^2}+2{x_0}{y_0}k+12-{y_0}^2=0$µÄÁ½¸ù£¬
¡à${k_1}•{k_2}=\frac{y_0^2-12}{x_0^2-12}$£¬
¡ßµãRÔÚÍÖÔ²CÉÏ£¬¡à$\frac{{{y_0}^2}}{36}+\frac{{{x_0}^2}}{18}=1$£¬¼´$y_0^2=36-2x_0^2$£¬
¡à${k_1}•{k_2}=\frac{24-2x_0^2}{x_0^2-12}=-2$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Ô²µÄÇÐÏßµÄÐÔÖÊ£¬¾àÀ빫ʽµÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªa£¬b£¬cΪ¡÷ABCµÄÈý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÏòÁ¿$\vec m$=£¨-1£¬$\sqrt{3}}$£©£¬$\vec n$=£¨cosA£¬sinA£©£®Èô$\vec m$¡Í$\vec n$£¬ÇÒacosB+bcosA=csinC£¬Ôò½ÇA£¬BµÄ´óС·Ö±ðΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$B£®$\frac{2¦Ð}{3}$£¬$\frac{¦Ð}{6}$C£®$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$D£®$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÔÚÇø¼ä[-1£¬1]ÄÚËæ»úÈ¡Á½¸öʵÊýx£¬y£¬ÔòÂú×ãy¡Ýx2-1µÄ¸ÅÂÊÊÇ$\frac{5}{6}$ £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®É輯ºÏA={x|-1¡Üx£¼2}£¬B={x|log2x£¾0}£¬ÔòA¡ÈB=£¨¡¡¡¡£©
A£®£¨1£¬2£©B£®[-1£¬2£©C£®[-1£¬+¡Þ£©D£®£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÃüÌâp£ºº¯Êýf£¨x£©=$\frac{x}{x-1}$µÄͼÏóµÄ¶Ô³ÆÖÐÐÄ×ø±êΪ£¨1£¬1£©£»ÃüÌâq£ºÈôº¯Êýg£¨x£©ÔÚÇø¼ä[a£¬b]ÉÏÊÇÔöº¯Êý£¬ÇÒg£¨x£©£¾0£¬ÔòÓÐg£¨a£©£¨b-a£©£¼${¡Ò}_{a}^{b}$g£¨x£©dx£¼g£¨b£©£¨b-a£©³ÉÁ¢£®ÏÂÁÐÃüÌâÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®p¡ÄqB£®©Vp¡ÄqC£®p¡Ä©VqD£®©Vp¡Ä©Vq

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¶¥µãÓëÅ×ÎïÏß  y2=2px£¨p£¾0£©µÄ½¹µãµÄ¾àÀëΪ4£¬ÇÒË«ÇúÏßµÄÒ»Ìõ½¥½üÏßÓëÅ×ÎïÏßµÄ×¼ÏߵĽ»µã×ø±êΪ£¨-1£¬-1£©£¬ÔòË«ÇúÏߵķ½³ÌΪ£¨¡¡¡¡£©
A£®$\frac{x^2}{16}$-$\frac{y^2}{4}$=1B£®$\frac{x^2}{4}$-y2=1C£®$\frac{x^2}{9}$-$\frac{y^2}{9}$=1D£®$\frac{x^2}{3}$-$\frac{y^2}{3}$=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÉèµÈ±ÈÊýÁÐ{an}ǰnÏîºÍΪSn£¬Èôa1+8a4=0£¬Ôò$\frac{S_6}{S_3}$=£¨¡¡¡¡£©
A£®-$\frac{65}{56}$B£®$\frac{65}{56}$C£®$\frac{7}{8}$D£®$\frac{9}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®£¨2x-a£©5µÄÕ¹¿ªÊ½ÖУ¬x4µÄϵÊýΪ-80£¬Ôòa=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©¼°Ô²O£ºx2+y2=a2£¬¹ýµãB£¨0£¬a£©ÓëÍÖÔ²ÏàÇеÄÖ±ÏßL½»Ô²OÓÚµãA£¬Èô¡ÏAOB=60¡ã£¬ÔòÍÖÔ²µÄÀëÐÄÂÊ$\frac{{\sqrt{3}}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸