·ÖÎö £¨1£©ÀûÓÃÇÐÏßµÄÐÔÖÊ¿ÉÇó³ö|OR|=2$\sqrt{6}$£¬ÓÖRÔÚÍÖÔ²ÉÏ£®Áз½³Ì×é½â³öRµã×ø±ê£»
£¨2£©¸ù¾ÝRµ½OP£¬OQµÄ¾àÀëΪ2$\sqrt{3}$µÃ³ök1£¬k2Ϊij¸öÒ»Ôª¶þ´Î·½³ÌµÄ½â£¬¸ù¾Ý¾àÀ빫ʽµÃ³öÕâ¸öÒ»Ôª¶þ´Î·½³Ì£¬½áºÏRΪÍÖÔ²ÉϵĵãµÃ³ök1•k2µÄÖµ£®
½â´ð ½â£º£¨1£©Ô²RµÄ°ë¾¶r=2$\sqrt{3}$£¬
¡ßOP¡ÍOQ£¬¡à|OR|=$\sqrt{2}$r=2$\sqrt{6}$£¬¡àx02+y02=24£¬
ÓÖµãRÔÚÍÖÔ²CÉÏ£¬¡à$\frac{{{y_0}^2}}{36}+\frac{{{x_0}^2}}{18}=1$£¬
ÁªÁ¢$\left\{\begin{array}{l}{{{x}_{0}}^{2}+{{y}_{0}}^{2}=24}\\{\frac{{{y}_{0}}^{2}}{36}+\frac{{{x}_{0}}^{2}}{18}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{x}_{0}=2\sqrt{3}}\\{{y}_{0}=2\sqrt{3}}\end{array}\right.$£®
¡àÔ²RµÄ·½³ÌΪ £¨x-2$\sqrt{3}$£©2+£¨y-2$\sqrt{3}$£©2=12£®
£¨2£©Ö±ÏßOP·½³ÌΪ£ºk1x-y=0£¬Ö±ÏßOQµÄ·½³ÌΪ£ºk2x-y=0£®
¡ßOP£¬OQΪԲRµÄÇÐÏߣ¬
¡à$\frac{|{k}_{1}{x}_{0}-{y}_{0}|}{\sqrt{1+{{k}_{1}}^{2}}}$=2$\sqrt{3}$£¬$\frac{|{k}_{2}{x}_{0}-{y}_{0}|}{\sqrt{1+{{k}_{2}}^{2}}}=2\sqrt{3}$£®
¡àk1£¬k2Ϊ·½³Ì${£¨12-{x_0}£©^2}{k^2}+2{x_0}{y_0}k+12-{y_0}^2=0$µÄÁ½¸ù£¬
¡à${k_1}•{k_2}=\frac{y_0^2-12}{x_0^2-12}$£¬
¡ßµãRÔÚÍÖÔ²CÉÏ£¬¡à$\frac{{{y_0}^2}}{36}+\frac{{{x_0}^2}}{18}=1$£¬¼´$y_0^2=36-2x_0^2$£¬
¡à${k_1}•{k_2}=\frac{24-2x_0^2}{x_0^2-12}=-2$£®
µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Ô²µÄÇÐÏßµÄÐÔÖÊ£¬¾àÀ빫ʽµÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$ | B£® | $\frac{2¦Ð}{3}$£¬$\frac{¦Ð}{6}$ | C£® | $\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$ | D£® | $\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨1£¬2£© | B£® | [-1£¬2£© | C£® | [-1£¬+¡Þ£© | D£® | £¨1£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | p¡Äq | B£® | ©Vp¡Äq | C£® | p¡Ä©Vq | D£® | ©Vp¡Ä©Vq |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{x^2}{16}$-$\frac{y^2}{4}$=1 | B£® | $\frac{x^2}{4}$-y2=1 | C£® | $\frac{x^2}{9}$-$\frac{y^2}{9}$=1 | D£® | $\frac{x^2}{3}$-$\frac{y^2}{3}$=1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{65}{56}$ | B£® | $\frac{65}{56}$ | C£® | $\frac{7}{8}$ | D£® | $\frac{9}{8}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com