精英家教网 > 高中数学 > 题目详情
19.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点与抛物线  y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-1,-1),则双曲线的方程为(  )
A.$\frac{x^2}{16}$-$\frac{y^2}{4}$=1B.$\frac{x^2}{4}$-y2=1C.$\frac{x^2}{9}$-$\frac{y^2}{9}$=1D.$\frac{x^2}{3}$-$\frac{y^2}{3}$=1

分析 求出抛物线的焦点坐标和准线方程,根据双曲线渐近线的关系建立方程求出a,b的值,即可得到结论.

解答 解:抛物线  y2=2px(p>0)的焦点坐标为($\frac{p}{2}$,0),准线方程为x=-$\frac{p}{2}$,
∵双曲线的一条渐近线与抛物线的准线的交点坐标为(-1,-1),
∴-$\frac{p}{2}$=-1,即p=2,y=$\frac{b}{a}$x过(-1,-1),
即-1=-$\frac{b}{a}$,则$\frac{b}{a}$=1,即b=a,
双曲线的左顶点为(-a,0),抛物线的焦点坐标为(1,0),
∵双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点与抛物线  y2=2px(p>0)的焦点的距离为4,
∴1-(-a)=1+a=4,
则a=3,b=3,
即双曲线的方程为$\frac{x^2}{9}$-$\frac{y^2}{9}$=1,
故选:C.

点评 本题主要考查双曲线方程的求解,根据双曲线和抛物线的方程和性质建立方程关系是解决本题的关键.考查学生的推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如果根据数学成绩是否及格与课后习题练习量的多少列联表,得到K2的观测值k=6.714,则判断数学成绩是否及格与课后习题练习量的多少有关,那么这种判断出错的可能性为(  )
A.10%B.2.5%C.1%D.5%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若过点P(a,a)与曲线f(x)=xlnx相切的直线有两条,则实数a的取值范围是(e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,已知a1=1,an+1=$\frac{n+2}{n}$Sn(n∈N*).
(1)证明:数列{${\frac{S_n}{n}}\right.$}是等比数列;
(2)令bn=ln$\frac{a_n}{n}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在平面直角坐标系xOy中,已知R(x0,y0)是椭圆$\frac{{y}^{2}}{36}$+$\frac{{x}^{2}}{18}$=1上的一点,从原点O向圆R(x-x02+(y-y02=12作两条切线,分别交椭圆于P,Q两点.
(1)若R点在第一象限,且直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,分别记为k1,k2,求k1•k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a$=(1,$\sqrt{3}$),|${\overrightarrow b}$|=1,|${\overrightarrow a$+2$\overrightarrow b}$|=2$\sqrt{3}$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2.
(Ⅰ)证明:平面BAP⊥平面DAP;
(Ⅱ)点M为线段AB(含端点)上一点,设直线MP与平面DCP所成角为α,求sinα的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=xa+ax的导函数f'(x)=2x+2,则数列{${\frac{1}{f(n)}$}的前9项和是(  )
A.$\frac{29}{36}$B.$\frac{31}{44}$C.$\frac{36}{55}$D.$\frac{43}{66}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中真命题的个数为(  )
①两个变量x,y的相关系数r越大,则变量x,y的相关性越强;
②从4个男生3个女生中选取3个人,则至少有一个女生的选取种数为31种.
③命题p:?x∈R,x2-2x-1>0的否定为?p:?x0∈R,x02-2x0-1≤0.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案