精英家教网 > 高中数学 > 题目详情
11.在直角梯形ABCD中,AB=2AD=2DC,E为BC边上的一点,$\overrightarrow{BC}$=3$\overrightarrow{EC}$,F为AE中点,则$\overrightarrow{BF}$=(  )
A.$\frac{2}{3}\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AD}$B.$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}\overrightarrow{AD}$C.-$\frac{2}{3}\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AD}$D.-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$

分析 如图所示,利用向量平行四边形法则、三角形法则、向量共线定理可得:$\overrightarrow{BF}$=$\frac{1}{2}\overrightarrow{BA}$+$\frac{1}{2}\overrightarrow{BE}$,$\overrightarrow{BE}$=$\frac{2}{3}$$\overrightarrow{BC}$,$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,$\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DC}$,$\overrightarrow{DC}$=$\frac{1}{2}\overrightarrow{AB}$,即可得出.

解答 解:如图所示
$\overrightarrow{BF}$=$\frac{1}{2}\overrightarrow{BA}$+$\frac{1}{2}\overrightarrow{BE}$,$\overrightarrow{BE}$=$\frac{2}{3}$$\overrightarrow{BC}$,$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,$\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DC}$,$\overrightarrow{DC}$=$\frac{1}{2}\overrightarrow{AB}$,
∴$\overrightarrow{BF}$=-$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{3}(\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB}-\overrightarrow{AB})$=$-\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AD}$.
故选:C.

点评 本题考查了向量平行四边形法则、三角形法则、向量共线定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.$\frac{2cos20°-cos40°}{sin40°}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow a$=(-5,1),$\overrightarrow b$=(2,x),且$\overrightarrow a$⊥$\overrightarrow b$,则x的值是10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2是椭圆$\frac{{x}^{2}}{4}$+y2=1的两个焦点,P为椭圆上一动点,则使|PF1|•|PF2|取最大值的点P为(  )
A.(-2,0)B.(0,1)C.(2,0)D.(0,1)或(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=($\sqrt{1+x}$+$\sqrt{1-x}$+2)($\sqrt{1-{x}^{2}}$+1)的值域是(  )
A.[2+$\sqrt{2}$,8]B.[2+$\sqrt{2}$,+∞)C.[2,+∞)D.[2+$\sqrt{2}$,4$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:?x∈[-1,1],m≤x2,命题q:?x∈R,x2+mx+1>0,若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.A、B是两个集合,A={y|y=x2-2},B={-3,1,y},其中y∈A,则y的取值集合是{y|y≥-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求与直线2x-y+10=0平行且在y轴、x轴上截距之和为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数$f(x)=2lnx-\frac{1}{2}m{x^2}-nx$,若x=2是f(x)的极大值点,则m的取值范围为(  )
A.$({-\frac{1}{2},+∞})$B.$({-\frac{1}{2},0})$C.(0,+∞)D.$({-∞,-\frac{1}{2}})∪({0,+∞})$

查看答案和解析>>

同步练习册答案