精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)=4lnx-\frac{1}{2}m{x^2}$(m>0).
(Ⅰ)若m=1,求函数f(x)的单调递增区间;
(Ⅱ)若函数g(x)=f(x)-(m-4)x,对于曲线y=g(x)上的两个不同的点M(x1,g(x1)),N(x2,g(x2)),记直线MN的斜率为k,若k=g'(x0),证明:x1+x2>2x0

分析 (Ⅰ)当m=1,求导,令f'(x)>0,即可求得函数f(x)的单调递增区间;
(Ⅱ)g(x)=$4lnx-\frac{1}{2}m{x^2}$+(4-m)x,则g(x1)-g(x2)=4(lnx1-lnx2)$-\frac{1}{2}m({x_1^2-x_2^2})+$(4-m)(x1-x2),由题设得$g'({x_0})=\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}$=$\frac{{4({ln{x_1}-ln{x_2}})}}{{{x_1}-{x_2}}}-$$\frac{1}{2}m({{x_1}+{x_2}})+({4-m})$,则$ln\frac{x_2}{x_1}-\frac{{2({\frac{x_2}{x_1}-1})}}{{\frac{x_2}{x_1}+1}}$=$lnt-\frac{{2({t-1})}}{t+1}$(t>1).构造辅助函数,求导,根据函数单调性,可知g'(x)在(0,+∞)上单调递减,则$\frac{{{x_1}+{x_2}}}{2}>{x_0}$,即x1+x2>2x0

解答 解:(Ⅰ)依题意,当m=1时,求导$f'(x)=\frac{4}{x}-x=\frac{{4-{x^2}}}{x}$=$\frac{{({2+x})({2-x})}}{x}$.
令f'(x)>0,即2-x>0,解得0<x<2,
故函数f(x)的单调递增区间为(0,2).
(Ⅱ)依题意,g(x)=f(x)-(m-4)x=$4lnx-\frac{1}{2}m{x^2}$+(4-m)x,
g(x1)-g(x2)=4(lnx1-lnx2)$-\frac{1}{2}m({x_1^2-x_2^2})+$(4-m)(x1-x2),
=4(lnx1-lnx2)-$\frac{1}{2}m({{x_1}+{x_2}})({{x_1}-{x_2}})$+(4-m)(x1-x2).
由题设得$g'({x_0})=\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}$=$\frac{{4({ln{x_1}-ln{x_2}})}}{{{x_1}-{x_2}}}-$$\frac{1}{2}m({{x_1}+{x_2}})+({4-m})$.
又$g'({\frac{{{x_1}+{x_2}}}{2}})=\frac{8}{{{x_1}+{x_2}}}-m$$•\frac{{{x_1}+{x_2}}}{2}+4-m$,
∴$g'({x_0})-g'({\frac{{{x_1}+{x_2}}}{2}})$=$\frac{{4({ln{x_1}-ln{x_2}})}}{{{x_1}-{x_2}}}-\frac{8}{{{x_1}+{x_2}}}$,
=$\frac{4}{{{x_2}-{x_1}}}[{({ln{x_2}-ln{x_1}})-\frac{{2({{x_2}-{x_1}})}}{{{x_2}+{x_1}}}}]$,
=$\frac{4}{{{x_2}-{x_1}}}[{ln\frac{x_2}{x_1}-\frac{{2({\frac{x_2}{x_1}-1})}}{{\frac{x_2}{x_1}+1}}}]$.
不妨设0<x1<x2,$t=\frac{x_2}{x_1}$,则t>1,则$ln\frac{x_2}{x_1}-\frac{{2({\frac{x_2}{x_1}-1})}}{{\frac{x_2}{x_1}+1}}$=$lnt-\frac{{2({t-1})}}{t+1}$(t>1).
令$h(t)=lnt-\frac{{2({t-1})}}{t+1}$(t>1),则$h'(t)=\frac{{{{({t-1})}^2}}}{{t{{({t+1})}^2}}}>0$,
∴h(t)在(1,+∞)上单调递增,
∴h(t)>h(1)=0,故$ln\frac{x_2}{x_1}-\frac{{2({\frac{x_2}{x_1}-1})}}{{\frac{x_2}{x_1}+1}}>0$.
又因为x2-x1>0,因此$g'({x_0})-g'({\frac{{{x_1}+{x_2}}}{2}})>0$,即$g'({\frac{{{x_1}+{x_2}}}{2}})<g'({x_0})$.
又由$g'(x)=\frac{4}{x}-mx+({4-m})$知g'(x)在(0,+∞)上单调递减,
∴$\frac{{{x_1}+{x_2}}}{2}>{x_0}$,即x1+x2>2x0

点评 本题考查导数的综合应用,考查利用导数与函数单调性极值与最值的关系,考查学生分析问题及解决问题的能力,考查构造法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知点M,N是抛物线y=4x2上不同的两点,F为抛物线的焦点,且满足∠MFN=135°,弦MN的中点P到直线l:y=-$\frac{1}{16}$的距离记为d,|MN|2=λ•d2,则λ的最小值为2+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函数y=f(x)与y=g(x)的图象恰有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且a1+a5=17.
(1)若{an}还同时满足:
①{an}为等比数列;②a2a4=16;③对任意的正整数n,a2n<a2n+2,试求数列{an}的通项公式.
(2)若{an}为等差数列,且S8=56.
①求该等差数列的公差d;②设数列{bn}满足bn=3n•an,则当n为何值时,bn最大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.运行如图所示的程序框图,若输出的k的值为13,则判断框中可以填(  )
A.m>7?B.m≥7?C.m>8?D.m>9?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数的解析式为y=$\sqrt{2}$sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知四棱锥P-ABCD底面ABCD是矩形,PA⊥平面ABCD,AD=4,AB=2,E,F分别是线段AB,BC的中点.
(1)证明:PF⊥FD;
(2)在PA上找一点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,
①理科做:求二面角P-DE-A的正切值;
②文科做:求点E到平面PFD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=acosϕ\\ y=bsinϕ\end{array}\right.$(a>b>0,ϕ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点$M({1,\frac{{\sqrt{3}}}{2}})$对应的参数$ϕ=\frac{π}{3}$,射线$θ=\frac{π}{3}$与曲线C2交于点$D({1,\frac{π}{3}})$.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)若点A(ρ1,θ),$B({{ρ_2},θ+\frac{π}{2}})$在曲线C1上,求$\frac{1}{ρ_1^2}+\frac{1}{ρ_2^2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列推导不正确的是(  )
A.a>b⇒c-a<c-bB.$\frac{c}{a}>\frac{c}{b},c>0⇒a<b$C.$a>b>0,c>d⇒\sqrt{\frac{a}{d}}>\sqrt{\frac{b}{c}}$D.$\root{n}{a}<\root{n}{b}(n∈{N^*})⇒a<b$

查看答案和解析>>

同步练习册答案