精英家教网 > 高中数学 > 题目详情
11.已知数列{an}的前n项和为Sn,且a1+a5=17.
(1)若{an}还同时满足:
①{an}为等比数列;②a2a4=16;③对任意的正整数n,a2n<a2n+2,试求数列{an}的通项公式.
(2)若{an}为等差数列,且S8=56.
①求该等差数列的公差d;②设数列{bn}满足bn=3n•an,则当n为何值时,bn最大?请说明理由.

分析 (1)根据等比数列的性质可得a1a5=16,又a1+a5=17,即可求出a1,a5的值,继而求出公比,写出通项公式即可
(2)①{an}为等差数列,且a1+a5=17,S8=56,建立方程组,即可求得该等差数列的公差d;②确定数列{bn}的通项,判断其单调性,即可求得bn最大值

解答 解:(1)因为{an}是等比数列,则a2a4=a1a5=16,又a1+a5=17,所以$\left\{\begin{array}{l}{{a}_{1}=1}\\{{a}_{5}=16}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=16}\\{{a}_{5}=1}\end{array}\right.$
从而an=2n-1或an=(-2)n-1或an=16×($\frac{1}{2}$)n-1或an=16×(-$\frac{1}{2}$)n-1
由③得,an=2n-1或an=16×($\frac{1}{2}$)n-1  
(2)①由题意,得$\left\{\begin{array}{l}{2{a}_{1}+4d=17}\\{8{a}_{1}+28d=56}\end{array}\right.$,解得d=-1
②由①知a1=$\frac{21}{2}$,所以an=$\frac{23}{2}$-n,则bn=3n•an=3n•($\frac{23}{2}$-n),
因为bn+1-bn=2×3n×(10-n)
所以b11=b10,且当n≤10时,数列{bn}单调递增,当n≥11时,数列{bn}单调递减,
故当n=10或n=11时,bn最大.

点评 本题考查等差数列的通项,考查数列的单调性,考查学生的计算能力,确定数列的通项是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款(年底余额)如表:
年份20122013201420152016
时间代号t12345
储蓄存款y(千亿元)567811
(1)求y关于t的回归方程$\widehaty=\widehatb•t+\widehata$;
(2)用所求回归方程预测该地区2017年(t=6)的人民币储蓄存款.
附:回归方程$\widehaty=\widehatb•t+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{{t_i}{y_i}-n\overline t\overline y}}}{{\sum_{i=1}^n{{t_i}^2-n\overline{t^2}}}},\widehata=\overline y-\widehatb\overline t$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用反证法证明命题:“已知a、b是自然数,若a+b≥3,则a、b中至少有一个不小于2”提出的假设应该是(  )
A.a、b都小于2B.a、b至少有一个不小于2
C.a、b至少有两个不小于2D.a、b至少有一个小于2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.是否存在实数a,使得函数y=cos2x+asinx+$\frac{5a}{8}$-$\frac{5}{2}$在闭区间[0,π]的最大值是0?若存在,求出对应的a的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=x2-xlnx+2,若存在区间$[{a,b}]⊆[{\frac{1}{2},+∞})$,使f(x)在[a,b]上的值域为[k(a+2),k(b+2)],则k的取值范围为(1,$\frac{9+2ln2}{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)满足f(4)=2,且对于任意正数x1,x2,都有f(x1•x2)=f(x1)+f(x2)成立.则f(x)可能为(  )
A.$f(x)=\sqrt{x}$B.$f(x)=\frac{x}{2}$C.f(x)=log2xD.f(x)=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=4lnx-\frac{1}{2}m{x^2}$(m>0).
(Ⅰ)若m=1,求函数f(x)的单调递增区间;
(Ⅱ)若函数g(x)=f(x)-(m-4)x,对于曲线y=g(x)上的两个不同的点M(x1,g(x1)),N(x2,g(x2)),记直线MN的斜率为k,若k=g'(x0),证明:x1+x2>2x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=lnx-\frac{1}{2}{x^2}+\frac{a}{x}$(a∈R,a为常数),函数$g(x)={e^{1-x}}+\frac{2a-1}{2}{x^2}-1$(e为自然对数的底).
(1)讨论函数f(x)的极值点的个数;
(2)若不等式f(x)≤g(x)对x∈[1,+∞)恒成立,求实数的a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1(λ,μ∈R),则|$\overrightarrow{OC}$|的最小值为(  )
A.1B.$\frac{\sqrt{5}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案