精英家教网 > 高中数学 > 题目详情
17.在数列{an}中,a1=5,an+1=an+3,则数列{an}的通项公式an=(  )
A.5nB.3n+2C.2n+3D.5•3n-1

分析 判断数列是等差数列,然后求解通项公式即可.

解答 解:在数列{an}中,a1=5,an+1=an+3,可知数列是等差数列,公差为3.
an=a1+(n-1)d=5+3(n-1)=3n+2.
故选:B.

点评 本题考查等差数列的判断,通项公式的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.给出定义:若函数f(x)在D上可导,即f'(x)存在,且导函数f'(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f''(x)=(f'(x))'.若f''(x)<0在D上恒成立,则在D上为凸函数,以下四个函数在(0,$\frac{3π}{4}$)上是凸函数的有(  )个
①f(x)=-x3+2x-1;  ②f(x)=lnx-2x;   ③f(x)=sinx+cosx; ④f(x)=xex
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b为正实数,且$\frac{1}{a}$+$\frac{2}{b}$=1,若a+b-c≥0对于满足条件的a,b恒成立,则c的取值范围为(  )
A.(-∞,3+$\sqrt{2}}$]B.(-∞,3+2$\sqrt{2}}$]C.(-∞,3+4$\sqrt{2}}$]D.(-∞,3+3$\sqrt{2}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用5种不同的颜色给如图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有260种不同的涂色方法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:1=1,1+3=4,1+3+5=9,1+3+5+7=16…
(1)归纳1+3+5+…+(2n-1)=?
(2)用数学归纳法证明(1)中的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的部分图象如图所示:
(1)求函数f(x)的解析式;
(2)若g(x)的图象是将f(x)的图象先向右平移1个单位,然后纵坐标不变横坐标缩短到原来的一半得到的,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.化简$\sqrt{1-{{sin}^2}440°}$+$\sqrt{1-2sin80°cos80°}$=sin80°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x>0,y>0,若xlg2,lg$\sqrt{2}$,ylg2成等差数列,则$\frac{1}{x}+\frac{16}{y}$的最小值为(  )
A.9B.16C.25D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x|0≤x<5},B={x|x<0},则集合A∪B=(  )
A.{x|0≤x<5}B.{0}C.{x|x<5}D.R

查看答案和解析>>

同步练习册答案