精英家教网 > 高中数学 > 题目详情
5.用5种不同的颜色给如图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有260种不同的涂色方法.

分析 根据题意,先分析于1号区域,有5种颜色可选,即有5种涂法方案,再分①若2、3号区域涂不同的颜色,②若2、3号区域涂相同的颜色,两种情况讨论其他3个区域的涂色方案,由分类计数原理可得其他个区域的涂色方案的数目;再由分步计数原理计算可得答案.

解答 解:对于1号区域,有5种颜色可选,即有5种涂法,
分类讨论其他3个区域:①若2、3号区域涂不同的颜色,则有A42=12种涂法,4号区域有3种涂法,此时其他3个区域有12×3=36种涂法;
②若2、3号区域涂相同的颜色,则有4种涂法,4号区域有4种涂法,此时其他3个区域有有4×4=16种涂法;
则共有5×(36+16)=5×52=260种;
故答案为:260.

点评 本题考查分步计数原理与分类计数原理的综合运用,注意4个区域的位置关系即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列说法不正确的是(  )
A.“φ=$\frac{π}{2}$”是“函数y=sin(2x+ϕ)为偶函数”的充要条件
B.若“p且q”为假,则p,q至少有一个是假命题
C.命题“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”
D.当a<0时,幂函数y=xa在(0,+∞)上是单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.边长为10cm的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒.
(1)试把方盒的容积V,表示为x的函数;
(2)x多大时,方盒的容器的容积最大?并求出最大容积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.二项式${({{x^2}-\frac{2}{x^3}})^5}$展开式中的常数项为(  )
A.-40B.40C.-80D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某工厂新研发的一种产品的成本价是4元/件,为了对该产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如表6组数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
(Ⅰ)若90≤x+y<100,就说产品“定价合理”,现从这6组数据中任意抽取2组数据,2组数据中“定价合理”的个数记为X,求X的数学期望;
(Ⅱ)求y关于x的线性回归方程,并用回归方程预测在今后的销售中,为使工厂获得最大利润,该产品的单价应定为多少元?(利润L=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2 014∈[4];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.
其中,正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在数列{an}中,a1=5,an+1=an+3,则数列{an}的通项公式an=(  )
A.5nB.3n+2C.2n+3D.5•3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x<1}\\{4(x-a)(x-2a),x≥1}\end{array}\right.$
(1)若a=1,求f(x)的最小值;
(2)若f(x)恰有2个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用一个与圆柱母线成600角的平面截圆柱,截口为一个椭圆,则该椭圆的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案