精英家教网 > 高中数学 > 题目详情
函数f(x)=2lnx+
ax
x+1
有两个不同的极值点x1,x2,其中a为实常数.
(Ⅰ)求a的取值范围;
(Ⅱ)设命题p:?x∈(0,+∞),
f(x1)+f(x2)
x+1
f(x)+2
x
-2,试判断命题p的真假,并说明你的理由.
考点:函数在某点取得极值的条件,导数在最大值、最小值问题中的应用
专题:导数的概念及应用,导数的综合应用
分析:(I)因为f(x)有两个不同的极值点x1,x2,则x1,x2是方程2x2+(a+4)x+2=0的两个不相等的正实数根,所以
△>0
x1+x2>0
x1x2>0
,解不等式可得a的取值范围;
(Ⅱ)设命题p:?x∈(0,+∞),
f(x1)+f(x2)
x+1
f(x)+2
x
-2,可转化为lnx-x+1≤0,构造函数g(x)=lnx-x+1,利用导数示求出最值,可得结论.
解答: 解:(Ⅰ)函数的定义域为(0,+∞),
f′(x)=
2
x
+
a
(x+1)2
=
2x2+(a+4)x+2
x(x+1)2
              …(2分)
因为f(x)有两个不同的极值点x1,x2
则x1,x2是方程2x2+(a+4)x+2=0的两个不相等的正实数根
所以
△>0
x1+x2>0
x1x2>0
,即
(a+4)2-16>0
-
a+4
2
>0
    …(4分)
解得:a<-8,
故a的取值范围是:(-∞,-8)…(6分)
(Ⅱ)由(Ⅰ)知:x1•x2=1
故f(x1)+f(x2)=2lnx1+
ax1
x1+1
+2lnx2+
ax2
x2+1

=2ln(x1•x2)+a(
x1
x1+1
+
x2
x2+1

=a•
2x1x2+x1+x2
x1x2+x1+x2+1

=a•
2+x1+x2
2+x1+x2
=a,…(9分)
所以不等式
f(x1)+f(x2)
x+1
f(x)+2
x
-2化为:
a
x+1
f(x)+2
x
-2,
即 ax≥(x+1)f(x)+2(x+1)-2x(x+1),
即  ax≥(x+1)2lnx+ax+2(x+1)-2x(x+1),
因为x>0,则不等式可化为:lnx-x+1≤0              …(11分)
令g(x)=lnx-x+1,则g′(x)=
1
x
-1(x>0).
x>1时,g′(x)<0;0<x<1时,g′(x)>0
所以当x∈(0,+∞)时,g(x)max=g(1)=0
所以当x∈(0,+∞)时,lnx-x+1≤0恒成立.
故命题p为真命题                                      …(13分)
点评:本题考查的知识点是函数在某点取得极值的条件,导数在最大值,最小值问题中的应用,是导数的综合应用,运算量大,综合性可,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

x,y∈R,x∈[0,1],y∈[0,1],则x2≤y≤x的概率为(  )
A、
1
4
B、
1
6
C、
1
8
D、
1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度时,给出的区间内的一个数,该数越接近10表示越满意,为了解某大城市市民的幸福感,随机对该城市的男、女各500人市民进行了调查,调查数据如下表所示:
幸福感指数 [0,2) [2,4) [4,6) [6,8) [8,10)
男市民人数 10 20 220 125 125
女市民人数 10 10 180 175 125
根据表格,解答下面的问题:
(Ⅰ)完成频率分布直方图,并根据频率分布直方图估算该城市市民幸福感指数的平均值;(参考数据:2×1+3×3+40×5+30×7+25×9=646)
(Ⅱ)如果市民幸福感指数达到6,则认为他幸福.据此,在该市随机调查5对夫妇,求他们之中恰好有3对夫妇二人都幸福的概率.(以样本的频率作为总体的概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤
1
8
(x+2)2成立.
(1)f(2);
(2)若f(-2)=0,求函数f(x)的表达式.
(3)在(2)的条件下,若关于x的不等式(4kx-1)2<kx2的解集中整数恰好有2个,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b是常数,f(x)=(x+a)2-7blnx+1.
(Ⅰ)若b=1时,f(x)在区间(1,+∞)上单调递增,求a的取值范围.;
(Ⅱ)当b=
4
7
a2时,讨论f(x)的单调性;
(Ⅲ)设n是正整数,证明:ln(n+1)7<(1+
1
22
+…+
1
n2
)+7(1+
1
2
+…+
1
n
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an•an+1=2•3n-1,n=1,2,3…,a1=1,
(1)求证:n≥2时,总有
an+1
an-1
=3;
(2)数列{bn}满足bn=
log3an ,  n为奇数
an ,  n为偶数
,求{bn}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:

学校游园活动有这样一个项目:甲箱子里装1个白球,2个黑球,乙箱子里装1个白球,1个黑球,这些球除颜色外没有区别.规定:从甲箱子中摸出一个白球记2分,摸出一个黑球记0分;从乙箱子中摸出一个白球记1分,摸出一个黑球记0分.从甲、乙箱子中各摸一个球叫摸球一次(摸后放回),每个人有两次摸球机会,若两次摸球的总分大于等于4分即获奖.
(Ⅰ)记摸一次球的得分为X,求随机变量X的分布列和数学期望;
(Ⅱ)求一个人获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A、B、C的对边分别为a,b,c,且满足条件:a(sinA-sinC)+csinC=bsinB.
(Ⅰ)求角B的大小;
(Ⅱ)求函数f(x)=sinx•cos(x+B)+
3
4
(x∈[0,
π
2
])的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z1=2+i,
.
z2
=1-i,在复平面内复数
z1
z2
所对应的点位于第
 
象限.

查看答案和解析>>

同步练习册答案