精英家教网 > 高中数学 > 题目详情
20.如图,椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且$\frac{|CD|}{|ST|}=2\sqrt{2}$
(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$(O为坐标原点),当|AB|<$\frac{{2\sqrt{5}}}{3}$时,求实数t的取值范围.

分析 (Ⅰ)由抛物线方程y2=4x得焦点F2(1,0),设椭圆E的方程为$\frac{{x}^{2}}{{b}^{2}+1}$+$\frac{{y}^{2}}{{b}^{2}}$=1,求出C(1,2),D(1,-2),由抛物线、椭圆都关于x轴对称,能求出椭圆方程.
(Ⅱ)设AB:y=k(x-2),由$\left\{\begin{array}{l}{y=k(x-2)}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得(1+2k2)x2-8k2x+8k2-2=0,由此利用根的判别式、韦达定理、向量知识、椭圆性质,结合已知条件能求出实数t的取值范围.

解答 解:(Ⅰ)∵椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,
∴由抛物线方程y2=4x得焦点F2(1,0),
∴设椭圆E的方程为$\frac{{x}^{2}}{{b}^{2}+1}$+$\frac{{y}^{2}}{{b}^{2}}$=1,
解方程组$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x=1}\end{array}\right.$,得C(1,2),D(1,-2),
∵抛物线、椭圆都关于x轴对称,
∴$\frac{|{F}_{2}C|}{|{F}_{2}S|}$=$\frac{|CD|}{|ST|}$=2$\sqrt{2}$,|F2S|=$\frac{\sqrt{2}}{2}$,∴S(1,$\frac{\sqrt{2}}{2}$),
∴$\frac{1}{{b}^{2}+1}$+$\frac{1}{2{b}^{2}}$=1,解得b2=1,
∴a2=1+1=2,
∴椭圆方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(Ⅱ)由题意知直线AB的斜率存在,
设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),
由$\left\{\begin{array}{l}{y=k(x-2)}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得(1+2k2)x2-8k2x+8k2-2=0,
△=64k2-4(2k2+1)(8k2-2)>0,解得k2<$\frac{1}{2}$,
${x}_{1}+{x}_{2}=\frac{8{k}^{2}}{1+2{k}^{2}}$,${x}_{1}{x}_{2}=\frac{8{k}^{2}-2}{1+2{k}^{2}}$,
∵|AB|<$\frac{2\sqrt{5}}{3}$,
∴(1+k2)[$\frac{64{k}^{2}}{(1+2{k}^{2})^{2}}-4•\frac{8{k}^{2}-2}{1+2{k}^{2}}$]<$\frac{20}{9}$,
∴(4k2-1)(14k2+13)>0,∴k2>$\frac{1}{4}$,
∴$\frac{1}{4}<{k}^{2}<\frac{1}{2}$,
∵$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$,∴(x1+x2,y1+y2)=t(x,y),
∴$x=\frac{{x}_{1}+{x}_{2}}{t}$,y=$\frac{{y}_{1}+{y}_{2}}{t}=\frac{1}{t}$[k(x1+x2)-4k]=$\frac{-4k}{t(1+2{k}^{2})}$,
∵点P在椭圆上,∴$\frac{(8{k}^{2})^{2}}{{t}^{2}(1+2{k}^{2})^{2}}$+2$•\frac{(-4k)^{2}}{{t}^{2}(1+2{k}^{2})^{2}}$=2,
∴16k2=t2(1+2k2),∴t2=$\frac{16{k}^{2}}{1+2{k}^{2}}$=8-$\frac{8}{1+2{k}^{2}}$,
∴$\frac{8}{3}<{t}^{2}<4$,
∴-2<t<-$\frac{2\sqrt{6}}{3}$或$\frac{2\sqrt{6}}{3}<t<2$,
∴实数t的取值范围为(-2,-$\frac{2\sqrt{6}}{3}$)∪($\frac{2\sqrt{6}}{3}$,2).

点评 本题考查椭圆方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、向量知识、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.2015年11月11日,天猫交易额以912.17亿元的成绩刷新了世界纪录.随之快递的订单量也激增.某机构就双十一期间快递公司A的物流速度进行了随机调查,如图是200名受调查者对快递公司A的评分(百分制)的频率分布直方图,则其得分的众数大致为(  )
A.65B.70C.75D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数g(x)=$\frac{1}{2}a{x^2}$-(a+1)x+lnx(a∈R,a≠0).
(1)求函数g(x)的单调区间;
(2)若当x∈[1,+∞)时恒有g(x)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设不等式组$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,表示的区域为M,若直线l:y=k(x+2)上存在区域M内的点,则k的取值范围是$[\frac{2}{7},\frac{22}{15}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知三点A(0,2),B(-3,0),C(4,0),矩形EFGH的顶点E、H分别在△ABC的边AB、AC上,F、G都在边BC上,不管矩形EFGH如何变化,它的对角线EG、HF的交点P恒在一条定直线l上,那么直线l的方程是2x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.cos$\frac{29π}{6}$的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,圆C:x2+y2=2,Q(3,0),圆外一动点M到圆C的切线长与|MQ|的比值为$\sqrt{2}$
(1)求动点M的轨迹方程;
(2)若斜率为k且过点P(0,2)的直线l和动点M的轨迹和交于A,B两点,是否存在常数k,使$\overrightarrow{OA}+\overrightarrow{OB}$与$\overrightarrow{PQ}$共线?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题:?x∈R,ln(ex-1)<0的否定是(  )
A.?x∈R,ln(ex-1)>0B.?x∈R,ln(ex-1)≥0C.?x∈R,ln(ex-1)<0D.?x∈R,ln(ex-1)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=$\frac{sinθ}{1-si{n}^{2}θ}$,在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{4}y}\end{array}\right.$得到曲线C′.
(1)求曲线C′的普通方程;
(2)设点M的直角坐标为(-2,0),直线l与曲线C′的交点为A,B,求|MA|•|MB|的值.

查看答案和解析>>

同步练习册答案