10£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=$\frac{sin¦È}{1-si{n}^{2}¦È}$£¬ÔÚÍ¬Ò»Æ½ÃæÖ±½Ç×ø±êϵÖУ¬½«ÇúÏßCÉÏµÄµã°´×ø±ê±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{3}x}\\{y¡ä=\frac{1}{4}y}\end{array}\right.$µÃµ½ÇúÏßC¡ä£®
£¨1£©ÇóÇúÏßC¡äµÄÆÕͨ·½³Ì£»
£¨2£©ÉèµãMµÄÖ±½Ç×ø±êΪ£¨-2£¬0£©£¬Ö±ÏßlÓëÇúÏßC¡äµÄ½»µãΪA£¬B£¬Çó|MA|•|MB|µÄÖµ£®

·ÖÎö £¨1£©Çó³öCµÄÖ±½Ç×ø±ê·½³Ì£¬½«ÇúÏßCÉÏµÄµã°´×ø±ê±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{3}x}\\{y¡ä=\frac{1}{4}y}\end{array}\right.$µÃµ½ÇúÏßC¡äµÄ·½³Ì£»
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$´úÈëy=$\frac{9}{4}$x2ÖУ¬ÕûÀíµÃ9t2-20$\sqrt{2}$t+72=0£¬ÉèA£¬B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬ÓÉtµÃ¼¸ºÎÒâÒå¿ÉÖª|MA||MB|=|t1t2|£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=$\frac{sin¦È}{1-si{n}^{2}¦È}$£¬Ö±½Ç×ø±ê·½³ÌΪy=x2£®
½«ÇúÏßCÉÏµÄµã°´×ø±ê±ä»»$\left\{\begin{array}{l}{x¡ä=\frac{1}{3}x}\\{y¡ä=\frac{1}{4}y}\end{array}\right.$µÃµ½ÇúÏßC¡äµÄ·½³ÌΪy=$\frac{9}{4}$x2£®
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$´úÈëy=$\frac{9}{4}$x2ÖУ¬
ÕûÀíµÃ9t2-20$\sqrt{2}$t+72=0£¬
ÉèA£¬B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬
¡àt1t2=9£¬
ÓÉtµÃ¼¸ºÎÒâÒå¿ÉÖª£¬|MA|•|MB|=|t1t2|=9£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Ö±Ïß·½²ÎÊý·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãF2ÓëÅ×ÎïÏßy2=4xµÄ½¹µãÖØºÏ£¬¹ýF2×÷ÓëxÖá´¹Ö±µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚS¡¢TÁ½µã£¬ÓëÅ×ÎïÏß½»ÓÚC¡¢DÁ½µã£¬ÇÒ$\frac{|CD|}{|ST|}=2\sqrt{2}$
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©Èô¹ýµãM£¨2£¬0£©µÄÖ±ÏßÓëÍÖÔ²EÏཻÓÚÁ½µãA£¬B£¬ÉèPΪÍÖÔ²EÉÏÒ»µã£¬ÇÒÂú×ã$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$£¨OÎª×ø±êÔ­µã£©£¬µ±|AB|£¼$\frac{{2\sqrt{5}}}{3}$ʱ£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªa£¾0£¬b£¾0£¬ÊԱȽÏM=$\sqrt{a}$+$\sqrt{b}$ÓëN=$\sqrt{a+b}$µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÎÒÃÇÖªµÀ£¬Èç¹û¼¯ºÏA⊆U£¬ÄÇôUµÄ×Ó¼¯AµÄ²¹¼¯Îª∁UA={x|x¡ÊU£¬ÇÒx∉A}£¬ÀàËÆµØ¶ÔÓÚ¼¯ºÏA¡¢B£¬ÎÒÃǰѼ¯ºÏ{x|x¡ÊAÇÒx∉B}½Ð×öAÓëBµÄ²î¼¯£¬¼Ç×÷A-B£®ÀýÈçA={1£¬2£¬3£¬5£¬8}£¬B={4£¬5£¬6£¬7£¬8}£®ÔòA-B={1£¬2£¬3}£®B-A={4£¬6£¬7}£®
¾Ý´Ë£¬»Ø´ðÒÔÏÂÎÊÌ⣺
£¨1£©²¹¼¯Óë²î¼¯ÓÐʲôÒìͬµã£¿
£¨2£©ÈôUÊǸßÒ»£¨1£©°àÈ«Ìåͬѧ×é³ÉµÄ¼¯ºÏ£¬AÊǸßÒ»£¨1£©°àÈ«ÌåŮͬѧ×é³ÉµÄ¼¯ºÏ£¬ÇóU-A¼°∁UA£®
£¨3£©ÔÚÏÂÁи÷ͼÖУ¬ÓÃÒõÓ°±íʾ¼¯ºÏA-B£®

£¨4£©Èç¹ûA-B=∅£¬ÄÇôAÓëBÖ®¼ä¾ßÓÐÔõÑùµÄ¹ØÏµ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªm¡¢nΪÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á¡¢¦ÂΪÁ½¸ö²»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¦Á¡Í¦Â£¬m?¦Á⇒m¡Í¦ÂB£®¦Á¡Í¦Â£¬m?¦Á£¬n?¦Â⇒m¡Ín
C£®m¡În£¬n¡Í¦Á⇒m¡Í¦ÁD£®m?¦Á£¬n?¦Á£¬m¡Î¦Â£¬n¡Î¦Â⇒¦Á¡Î¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÇÒ¹ýµã£¨-2£¬3£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýÍÖÔ²CµÄÓÒ½¹µã×÷Á½ÌõÏ໥´¹Ö±µÄÖ±Ïßl£¬m£¬ÇÒÖ±Ïßl½»ÍÖÔ²CÓÚM¡¢NÁ½µã£¬Ö±Ïßm½»ÍÖÔ²CÓÚP¡¢QÁ½µã£¬Çó|MN|+|PQ|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÅ×ÎïÏßC£ºy2=4xµÄ½¹µãΪF¡¢OÎª×ø±êÔ­µã£¬µãPÔÚÅ×ÎïÏßCÉÏ£¬ÇÒPF¡ÍOF£¬Ôò|$\overrightarrow{OF}$-$\overrightarrow{PF}$|=$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÃüÌâp£ºÈô$\overrightarrow{a}$•$\overrightarrow{b}$£¾0£¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪÈñ½Ç£»
ÃüÌâq£ºÈôº¯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0]¼°£¨0£¬+¡Þ£©É϶¼ÊǼõº¯Êý£¬Ôòf£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊǼõº¯Êý£®ÏÂÁÐ˵·¨£º¢Ù¡°p¡Åq¡±ÊÇÕæÃüÌ⣻¢Ú¡°p¡Åq¡±ÊǼÙÃüÌ⣻¢Û·ÇpΪ¼ÙÃüÌ⣻¢Ü·ÇqΪ¼ÙÃüÌ⣮
ÆäÖÐÕýÈ·µÄÊÇ¢Ú£¨ÌîÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑ֪˫ÇúÏßÊÂ$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÒ»Ìõ½¥½üÏßÓëÖ±Ïßy=2x+5ƽÐУ¬ÔòË«ÇúÏßµÄÀëÐÄÂʵÈÓÚ£¨¡¡¡¡£©
A£®2B£®5C£®$\sqrt{5}$D£®$\sqrt{6}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸