精英家教网 > 高中数学 > 题目详情
17.如图所示的程序框图的功能是求$2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}$的值,则框图中的①、②两处应分别填写(  )
A.i<5?,$S=\sqrt{2}+S$B.i≤5?,$S=\sqrt{2}+S$C.i<5?,$S=2+\sqrt{S}$D.i≤5?,$S=2+\sqrt{S}$

分析 根据流程图所表示的算法功能可知求$2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}$的值,从而应该利用$S=2+\sqrt{S}$来累加,根据循环的次数,可得处理框应填结果.

解答 解:程序框图是计算$2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}$的值,
则可利用循环结构累加$S=2+\sqrt{S}$,共循环4次,
则第一个处理框应为i<5,
然后计算$S=2+\sqrt{S}$,
第二空应填写$S=2+\sqrt{S}$.
故选:C.

点评 本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,底面是正三角形,侧棱BB1⊥平面ABC,D是棱BC的中点,点M在BB1棱上,且CM⊥AC1,AB=1,BB1=2.
(1)求三棱锥D-ABC1的体积;
(2)求证:A1B∥平面AC1D;
(3)求证:CM⊥C1D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数y=x2的图象与y=n(n>0)的图象所围成的封闭图形的面积为$\frac{32}{3}$,则二项式(1-$\frac{n}{x}$)n的展开式中$\frac{1}{{x}^{2}}$的系数为(  )
A.96B.-96C.16D.-16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知实数x∈{1,2,3,4,5,6,7,8,9},执行如图所示的程序框图,则输出的x大于120的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{7}{9}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线C:y2=2px(p>0)上一点M(4,n)(n∈N*)到抛物线C的焦点的距离为5,则${(2x-\frac{1}{x})^n}$的展开式中的常数项为(  )
A.-24B.-6C.6D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,下列四个几何题中,他们的三视图(主视图,俯视图,侧视图)有且仅有两个相同,而另一个不同的两个几何体是(  )
A.(1),(2)B.(1),(3)C.(2),(3)D.(1),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.计划将排球、篮球、乒乓球3项目的比赛安排在4不同的体育馆举办,每个项目的比赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过2的安排方案共有60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知定义在R上的单调函数f(x)的图象经过点A(-3,2)、B(2,-2),若函数f(x)的反函数为f-1(x),则不等式|2f-1(x-2)+1|<5的解集为(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知b为实数,i为虚数单位,若$\frac{2+b•i}{1-i}$为实数,则b=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

同步练习册答案